Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maacha, Lhou

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Contribution of the RSCM geothermometry to understanding the thermal history of the Hajjar deposit (Guemassa massif, Morocco). citations

Places of action

Chart of shared publication
Branquet, Yannick
1 / 1 shared
Lahfid, Abdeltif
1 / 6 shared
Delchini, Sylvain
1 / 3 shared
Ramboz, Claire
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Branquet, Yannick
  • Lahfid, Abdeltif
  • Delchini, Sylvain
  • Ramboz, Claire
OrganizationsLocationPeople

document

Contribution of the RSCM geothermometry to understanding the thermal history of the Hajjar deposit (Guemassa massif, Morocco).

  • Branquet, Yannick
  • Lahfid, Abdeltif
  • Delchini, Sylvain
  • Ramboz, Claire
  • Maacha, Lhou
Abstract

The knowledge of the thermal history of rocks is a key point for reconstructing the history of basins or mountain belts for mining or petroleum industries. Conventional techniques such as mineralogy, isotopic analysis, provide basic data concerning the maturity degree of organic matter. Recent new geothermometric approach based on the Raman Spectroscopy of Carbonaceous Materials (RSCM) has been developed. This approach allows successfully estimating peak temperatures of advanced diagenesis to high-grade metamorphic rocks. The aim of this study is mainly to apply the RSCM geothermometry for 3D paleotemperatures cartography in the Guemassa area, a Hercynian massif located at 35 Km SW of Marrakech, Morocco. This area composed of the carboniferous metasediments, underwent tectonic, metamorphic and hydrothermal events that explain the presence of several base metal deposits like Zn-Pb-Cu Hajjar mine. Combining RSCM data and classical methods of thermometry like fluid inclusions and chlorite thermometry will allow a good understanding of thermal history of Hajjar deposits. The samples used in this study were collected around the Hajjar mine and from different depths in the Hajjar body collected in the footwall and hangingwall of the massive ore. Our peak temperature estimates show values superior to 500°C. These temperatures differ from the ones obtained by other classical methods, which are not higher than 450°C. Nevertheless, fluid inclusion homogenization temperatures of 450°C represent minimum trapping temperature conditions, since the fluids were trapped above boiling conditions. Also, 450°C represents minimum thermic condition for the biotite isograd. Higher Raman temperatures obtained in this work confirm the hypothesis of a late heat flow related to a deep granitic intrusion. This intrusion could be closer to the Hajjar deposit which would explain the higher Raman temperature around the mineralization. It is important to properly evaluate the consequences of this high late heat flux on the Hajjar mineralization, as it may have caused the recrystallization of the ore, with an increase of the particle size related. This thermal event could also have generated new mineralizing fluids. That is why future work will include the acquisition of complementary geochemical, chronological and structural data to better explain these high temperatures and to analyse their impact on the mineralization and their possible link with different mineralization processes.

Topics
  • impedance spectroscopy
  • inclusion
  • recrystallization
  • Raman spectroscopy
  • homogenization