People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salvage, Jonathan P.
University of Brighton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Food-Inspired, High-Sensitivity Piezoresistive Graphene Hydrogelscitations
- 2023Smart Skins Based on Assembled Piezoresistive Networks of Sustainable Graphene Microcapsules for High Precision Health Diagnosticscitations
- 2022Nanosheet-Stabilized Emulsionscitations
- 2022Explosive percolation yields highly-conductive polymer nanocompositescitations
- 2021Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tabletscitations
- 2020Nanosheet-stabilized emulsions
- 2020Ultrasensitive Strain Gauges Enabled by Graphene-Stabilized Silicone Emulsionscitations
- 2018Carbon Nanofoam Supercapacitor Electrodes with Enhanced Performance Using a Water-Transfer Processcitations
- 2018Percolating metallic structures templated on laser-deposited carbon nanofoams derived from graphene oxide: applications in humidity sensingcitations
- 2012Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contentscitations
- 2012Synthesis and characterization of soybean-based hydrogels with an intrinsic activity on cell differentiation
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of soybean-based hydrogels with an intrinsic activity on cell differentiation
Abstract
The successful regeneration of large defects in traumatized and diseased tissues depends on the availability of biodegradable and bioactive biomaterials able to guide the tissue during its repair by offering both a physical support and a control of its biological mechanisms. Recently, a novel class of natural, biodegradable biomaterials has been obtained by the thermosetting of defatted soy curd. These biomaterials have been shown to regulate the activity of both tissue and inflammatory cells. Here, soybean-based hydrogels with different physicochemical properties and bioactivity have been obtained with a relatively simple and highly reproducible processing method. The content of the different soy components (e.g., the isoflavones) was tuned varying the solvent system during the extraction procedure, while variations in the material crosslinking provided either loose hydrogels or a bioglue. The biomaterials obtained can be used as either bioadhesives or injectable formulations in regenerative medicine as they were shown to stimulate the synthesis of collagen by fibroblasts and the formation of mineralized bone noduli by osteoblasts.