People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Laurson, Lasse
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Magnetic domain wall dynamics studied by in-situ lorentz microscopy with aid of custom-made Hall-effect sensor holdercitations
- 2024Barkhausen noise in disordered striplike ferromagnetscitations
- 2024Magnetic domain walls interacting with dislocations in micromagnetic simulationscitations
- 2024Magnetic behavior of steel studied by in-situ Lorentz microscopy, magnetic force microscopy and micromagnetic simulations
- 2024Barkhausen noise in disordered striplike ferromagnets : Experiment versus simulationscitations
- 2023Machine learning dislocation density correlations and solute effects in Mg-based alloyscitations
- 2023Predicting elastic and plastic properties of small iron polycrystals by machine learningcitations
- 2023Multi-instrumental approach to domain walls and their movement in ferromagnetic steels – Origin of Barkhausen noise studied by microscopy techniquescitations
- 2022Novel utilization of microscopy and modelling to better understand Barkhausen noise signal
- 2021Mimicking Barkhausen noise measurement by in-situ transmission electron microscopy - effect of microstructural steel features on Barkhausen noisecitations
- 2020Propagating bands of plastic deformation in a metal alloy as critical avalanchescitations
- 2020Machine learning depinning of dislocation pileupscitations
- 2019Bloch-line dynamics within moving domain walls in 3D ferromagnetscitations
- 2018Effects of precipitates and dislocation loops on the yield stress of irradiated ironcitations
- 2016Predicting sample lifetimes in creep fracture of heterogeneous materialscitations
- 2016Glassy features of crystal plasticitycitations
- 2014Influence of material defects on current-driven vortex domain wall mobilitycitations
- 2013A numerical approach to incorporate intrinsic material defects in micromagnetic simulations
- 2013Influence of disorder on vortex domain wall mobility in magnetic nanowires
Places of action
Organizations | Location | People |
---|
document
A numerical approach to incorporate intrinsic material defects in micromagnetic simulations
Abstract
A number of future spintronic devices are based on the controlled movement of magnetic domain walls in thin films, disks and strips. In order to fully control this movement, it is of paramount importance to completely understand the effects of material imperfections inherently present in the magnetic samples, in nanowires in particular.Recently it was found that the inclusion of distributed disorder in the form of voids with zero saturation magnetisation in simulations of nanowires qualitatively changes the magnetic domain wall movement [1]. In this contribution we investigate which micromagnetic parameters should be changed in micromagnetic simulations to more realistically represent material defects, i.e. to generate pinning potentials that quantitatively correspond to the measured ones [2].In experiments only the interaction range and pinning energy of natural pinning sites are accessible in contrast to the local variations of the individual micromagnetic parameters[3]. Therefore, we propose to introduce material defects in micromagnetic simulations as local variations in material parameters that result in comparable characteristic pinning potentials. We show that in 2D micromagnetic simulations locally reducing the exchange constant is a good candidate. By tuning the amount with which the exchange constant is reduced and the size of the area with reduced exchange constant, the pinning strength and interaction range can be tuned to give rise to pinning potentials that correspond remarkably well with real natural defects [2].