People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcbride, John Willaim
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2019Transient contact opening forces in a MEMS switch using Au/MWCNT compositecitations
- 2019Arc modeling to predict arc extinction in low-voltage switching devicescitations
- 2018In-situ contact surface characterization in a MEMS ohmic switch under low current switchingcitations
- 2015Characterisation of nanographite for MEMS resonators
- 2013A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switchescitations
- 2012The effects of porosity, electrode and barrier materials on the conductivity of piezoelectric ceramics in high humidity and dc electric fieldcitations
- 2009The effect of relative humidity, temperature and electrical field on leakage currents in piezo-ceramic actuators under dc biascitations
- 2009Micro-computer tomography-An aid in the investigation of structural changes in lead zirconate titanate ceramics after temperature-humidity bias testingcitations
- 2009Study of temperature change and vibration induced fretting on intrinsically conducting polymer contact systemscitations
- 2006The contact resistance force relationship of an intrinsically conducting polymer interfacecitations
- 2006The influence of thermal cycling and compressive force on the resistance of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid)-coated surfacescitations
- 2005Intermittency events in bio-compatible electrical contactscitations
- 2005The fretting characteristics of intrinsically conducting polymer contacts
- 2005Displacement measurements at the connector contact interface employing a novel thick film sensorcitations
- 2004The contact resistance force relationship of an intrinsically conducting polymer interfacecitations
- 2004Minimising fretting slip in connector terminals using conducting polymer contacts
- 2002Fretting in connector terminals using conducting polymer contacts
- 2002Fretting corrosion studies of an extrinsic conducting polymer and tin Interfacecitations
- 2002Fretting corrosion and the reliability of multicontact connector terminalscitations
- 2000Degradation of road tested automotive connectorscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Characterisation of nanographite for MEMS resonators
Abstract
Thin-film graphite and graphene are promising materials for nanoelectomechanical systems (NEMS) resonators, for sensors and signal processing applications. The high in-plane stiffness, low mass density and electrical conductivity of graphene are key properties to obtain NEMS resonators with high natural frequencies, sensitivities and tunability. Chemical vapor deposition (CVD) onto a copper catalyst is the most widely-used method to obtain large-scale graphene. However this requires transfer to a desired substrate which adds complexity and can cause wrinkling and polymer contamination. As an alternative, plasma-enhanced CVD (PECVD) has been used to deposit nanographene and nanographite films directly onto insulating substrates, such as SiO<sub>2</sub>. Such films have graphitic domains ~10 nm in diameter. In this work, we fabricate electrostatically actuated MEMS resonators from nanographite, establishing this as a route towards integration of nanographene/graphite using CMOS-compatible fabrication. To fabricate our devices, 300 nm thick nanographite is deposited by PECVD onto 6-inch silicon wafers with 200 nm SiO<sub>2</sub> layer. Methane is the carbon precursor with hydrogen diluent in ratio 60:75 sccm and material characterisation is performed using Raman spectroscopy and atomic force microscopy. The film is patterned via optical lithography into 10 µm wide doubly-clamped and cantilever beams and etched using O<sub>2</sub> based reactive ion etching. E-beam evaporated nickel pads are used as contacts, then the device is released by isotropically etching the underlying SiO<sub>2</sub> using HF vapour. The nanographite is under a relatively high compressive stress which causes buckling of the doubly-clamped beam. However, we over-etch the SiO<sub>2</sub> to achieve a ~30 µm undercut of the beam anchors. The stress gradient in the film creates an upward deflection of the anchors and imparts an effective tension to the suspended beam. Finite element simulation has been undertaken to take account of the added ‘length’ which is added to the beam. We then model the fundamental mode of vibration as a beam under tension. To measure the resonant frequency of the resonators, we apply DC bias plus a time varying AC voltage, between the beam and substrate, causing a varying force at the frequency of the AC voltage. The velocity of the beam is measured using laser Doppler vibrometry and becomes large at mechanical resonance. Natural frequency of vibration has been measured for a large number of devices: 257 kHz for 150 µm beams, 420 kHz for 100 µm, 595 kHz 75 µm beams and 15 kHz for 100 µm cantilevers. Quality factors have been calculated from a fitted Lorentzian curve and at ambient pressure are 20 and 1300 at 30 mTorr. Application of increasing DC Bias (up to 50 V maximum) enables tuning of the natural frequency by electrostatic spring softening, with an average tunability of 1.19 kHz per volt across this range.