Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wood, Sarahjane

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Solid oral dosage form manufacturing using injection mouldingcitations

Places of action

Chart of shared publication
Florence, Alastair
1 / 11 shared
Halbert, Gavin
1 / 5 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Florence, Alastair
  • Halbert, Gavin
OrganizationsLocationPeople

document

Solid oral dosage form manufacturing using injection moulding

  • Florence, Alastair
  • Halbert, Gavin
  • Wood, Sarahjane
Abstract

The most preferred route of drug administration is via an oral dosage form and currently the most widely used manufacturing method is direct compression of powder blends. However it can be difficult to control the homogeneity of these dosage forms due to inefficient mixing. Dispersing API within a molten polymer can give more control over the spatial arrangement of drug within the dosage forms resulting in higher quality doses. Using polymers also has the added benefit that drug-polymer interactions can increase solubility of drugs reducing the growing concern of the number of aqueous insoluble drugs on the market (1). <br/>Injection Moulding (IM) is a novel method to produce dosage forms. It works by melting formulations containing polymer and drug together and injecting it into a cavity. By combining this technology with Hot Melt Extrusion (HME) which introduces highly efficient mixing the drug dose can be controlled. However the main disadvantage to using polymers is that sustained release often occurs due to the slow erosion properties and high pressures used during injection moulding(2). Stability issues can also occur when using high drug loadings as the polymer becomes saturated.<br/>Disintegrating agents can be introduced to the formulation in order to increase the time taken to obtain complete drug release. It is important to note that due to the nature or polymer true ‘disintegration’ won’t occur as it does with compressed tablets however they do have the ability to help facilitate the breakdown of polymers(3) . Filaments were produced using HME based on a Design of Experiments approach were analysed using disintegration apparatus and the results suggests the best disintegrating agents to use were small natural molecules. However the main factor influencing the mass remaining was the concentration of API as this was a BCS Class II drug.<br/>References<br/>1. Karataş A, Yüksel N, Baykara T. 'Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol'. Il Farmaco. 2005;60(9):777-82.<br/>2. Claeys B, Vervaeck A, Hillewaere XKD, Possemiers S, Hansen L, De Beer T, et al. 'Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding'. E. J. Pharm. Biopharm. 2015;90:44-52.<br/>3. Agrawal A, Dudhedia M, Deng W, Shepard K, Zhong L, Povilaitis E, et al. 'Development of tablet formulation of amorphous solid dispersions prepared by hot melt extrusion using quality by design approach'. AAPS PharmSciTech. 2016;17(1):214-32.<br/><br/>

Topics
  • impedance spectroscopy
  • dispersion
  • amorphous
  • experiment
  • melt
  • injection molding
  • thermoplastic
  • melt extrusion