People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nguyen, Vu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Advances in Additive Manufacturing of Auxetic Structures for Biomedical Applicationscitations
- 2024Analysis of self-supporting conformal cooling channels additively manufactured by hybrid directed energy deposition for IM toolingcitations
- 2023Advances in Multiscale Modelling of Metal Additive Manufacturing
- 2023Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit modelcitations
- 2022Directed-energy deposition (DED) of Ti-6Al-4V alloy using fresh and recycled feedstock powders under reactive atmosphere
- 2021Progress Towards a Complete Model of Metal Additive Manufacturingcitations
- 2019Measurement of Laser Absorptivity by Calibrated Melt Pool Simulation
- 2019Residual Stress in Additive Manufacture
- 2018Accelerating Experimental Design by Incorporating Experimenter Hunchescitations
- 2017Modelling Powder Flow in Metal Additive Manufacturing Systems
- 2017A desktop computer model of the arc, weld pool and workpiece in metal inert gas weldingcitations
- 2017Aiming for modeling-assisted tailored designs for additive manufacturingcitations
- 2015A desktop computer model of arc welding using a CFD approach
- 2015Prediction of springback in anisotropic sheet metals: The effect of orientation and frictioncitations
- 2011Modelling die filling in ultra-thin aluminium die castings
- 20113D thermo-mechanical modelling of wheel and belt continuous castingcitations
Places of action
Organizations | Location | People |
---|
document
Residual Stress in Additive Manufacture
Abstract
Powder bed fusion (PBF) and Directed Energy Deposition (DED) are the two widely used Additive Manufacturing (AM) technologies. Energy sources such as laser or electron beam are used for melting of powder or wire following the geometric information contained in a Computer-Aided-Design (CAD) file. In these processes, components or parts are built in a layer-by-layer manner until a fully dense 3D structure is achieved. High thermal gradients and multiple thermal cycles are usually observed in DED and PBF processes, which combined with the characteristic thermal contraction of metallic materials following solidification and cooling result in residual stress and shape distortion. Understanding of stress evolution in these processes is therefore highly desired for stress management and process improvement. This paper presents the predicted stresses occurring during DED and PBF of Ti-6Al-4V builds. The results provide an understanding of the evolution of stress during and after completion of the builds. Managing stress raisers is also discussed.