People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ritchie, David
Swansea University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Determining the laser absorptivity of Ti-6Al-4V during selective laser melting by calibrated melt pool simulationcitations
- 2023Advances in Multiscale Modelling of Metal Additive Manufacturing
- 2020A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors.
- 2019Line-defect photonic crystal terahertz quantum cascade lasercitations
- 2019Fine Microstructure Control in Additively Manufactured Stainless Steel via Layerwise Rotation of The Scan Direction
- 2019Corrosion Studies of Additive Manufactured Alpha-Beta Ti Alloys
- 2019Corrosion Studies of Additively Manufactured Ti Alpha-Beta Alloys
- 2019Measurement of Laser Absorptivity by Calibrated Melt Pool Simulation
- 2019Residual Stress in Additive Manufacture
- 2018Systematic Study of Ferromagnetism in CrxSb2-xTe3 Topological Insulator Thin Films using Electrical and Optical Techniques.
- 2018Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wirescitations
- 2011Friction stir blind riveting: A novel joining process for automotive light alloyscitations
Places of action
Organizations | Location | People |
---|
document
Measurement of Laser Absorptivity by Calibrated Melt Pool Simulation
Abstract
In recent years there has been considerable progress in developing AM simulation capabilities aimed at process optimization, component qualification and process control. The amount of energy transferred to the part by the laser or electron beam is, of course, a critical factor. However, at least for selective laser melting (SLM), the published literature contains surprisingly little data on laser absorptivity that apply to the actual operating conditions.To address this gap, we report the results of a detailed investigation of the factors affecting laser absorption by Ti-6Al-4V during SLM. By calibrating melt pool CFD simulations against single track experiments conducted over a range of energy densities, we have been able to determine the intrinsic laser absorptivity of Ti-6Al-4V during SLM. Our simulations incorporate multiple laser reflections and cover the transition from conduction to keyhole mode. We also discuss physical mechanisms that may be responsible for an increase in the effective laser absorptivity at high energy density which is observed in this and other work.