Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fleming, Gairy J. P.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Adhesive luting of all-ceramic restorations - The impact of cementation variables and short-term water storage on the strength of a feldspathic dental ceramiccitations

Places of action

Chart of shared publication
Addison, Owen
1 / 43 shared
Marquis, Peter M.
1 / 4 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Addison, Owen
  • Marquis, Peter M.
OrganizationsLocationPeople

article

Adhesive luting of all-ceramic restorations - The impact of cementation variables and short-term water storage on the strength of a feldspathic dental ceramic

  • Addison, Owen
  • Fleming, Gairy J. P.
  • Marquis, Peter M.
Abstract

<p>Purpose: To investigate the impact of resin cement luting variables and short-term water storage on the strength of an adhesively luted all-ceramic restorative material. An understanding of the strengthening mechanisms will result in optimisation of operative techniques and materials selection criteria. Materials and Methods: The "fit" surfaces of 480 disk-shaped feldspathic porcelain specimens were alumina air abraded to introduce a clinically relevant surface texture and consistent surface defect population. Thirty specimens randomly allocated to each of 16 groups were coated with silane, unfilled resin or filled resin cement, or a combination. Eight groups were stored either dry or wet for 24 h prior to bi-axial flexure testing (ball-on-ring). Statistical analysis of the flexure strength data involved a three-factor general linear model (p &lt; 0.05) prior to a Weibull analysis. Results: Resin coating the porcelain surface resulted in a significant increase in the characteristic stress (σ<sub>o</sub>), and strengthening was dependent on coating type (p &lt; 0.001). Silane priming resulted in additional strengthening when preceding filled resin cement coating. Water immersion for 24 h resulted in a strength degradation of both the uncoated control and coated specimens, whereby the magnitude of strength degradation was dependent on coating type (p &lt; 0.001). Conclusion: Resin luting of dental ceramics results in significant strengthening likely to impact on clinical performance. The strengthening is dependent on the creation of a resin-ceramic hybrid layer sensitive to cementation variables and clinical placement technique. Short-term water immersion results in a significant degradation of strengthening sensitive to the characteristics of the resin-ceramic hybrid layer.</p>

Topics
  • impedance spectroscopy
  • surface
  • strength
  • cement
  • texture
  • defect
  • ceramic
  • resin