Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Christensen, Mogens

  • Google
  • 53
  • 154
  • 1414

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (53/53 displayed)

  • 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Study2citations
  • 2024The Chemistry of Spinel Ferrite Nanoparticle Nucleation, Crystallization, and Growth13citations
  • 2024Aligned Permanent Magnet Made in Seconds:An In Situ Diffraction Study2citations
  • 2024High-performance hexaferrite magnets tailored through alignment of shape-controlled nanocomposites1citations
  • 2023High-Performance Hexaferrite Ceramic Magnets Made from Nanoplatelets of Ferrihydrite by High-Temperature Calcination for Permanent Magnet Applications8citations
  • 2023Sintering in seconds, elucidated by millisecond in situ diffraction3citations
  • 2023Defect-Engineering by Solvent Mediated Mild Oxidation as a Tool to Induce Exchange Bias in Metal Doped Ferrites6citations
  • 2022In-depth investigations of size and occupancies in cobalt ferrite nanoparticles by joint Rietveld refinements of X-ray and neutron powder diffraction data6citations
  • 2022Exploiting different morphologies of non-ferromagnetic interacting precursor’s for preparation of hexaferrite magnets10citations
  • 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnets9citations
  • 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnetscitations
  • 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnetscitations
  • 2021Uncorrelated magnetic domains in decoupled SrFe 12 O 19 /Co hard/soft bilayers6citations
  • 2021Synthesis and Characterization of a Magnetic Ceramic Using an Easily Accessible Scale Setup2citations
  • 2020Restructuring Metal–Organic Frameworks to Nanoscale Bismuth Electrocatalysts for Highly Active and Selective CO 2 Reduction to Formate146citations
  • 2020Exploring the direct synthesis of exchange-spring nanocomposites by reduction of CoFe 2 O 4 spinel nanoparticles using in situ neutron diffraction7citations
  • 2020Expanding the tunability and applicability of exchange-coupled/decoupled magnetic nanocomposites15citations
  • 2020Expanding the tunability and applicability of exchange-coupled/decoupled magnetic nanocomposites15citations
  • 2020Exploring the direct synthesis of exchange-spring nanocomposites by reduction of CoFe2O4 spinel nanoparticles using in situ neutron diffraction7citations
  • 2020Restructuring Metal–Organic Frameworks to Nanoscale Bismuth Electrocatalysts for Highly Active and Selective CO<sub>2</sub> Reduction to Formate146citations
  • 2020Restructuring Metal–Organic Frameworks to Nanoscale Bismuth Electrocatalysts for Highly Active and Selective $CO_{2}$ Reduction to Formate146citations
  • 2020Correlation between microstructure, cation distribution and magnetism in Ni 1-: X Zn x Fe 2 O 4 nanocrystallites19citations
  • 2019Novel fast heating furnaces for in situ powder neutron diffractioncitations
  • 2019Structure and magnetic properties of W-type hexaferrites22citations
  • 2019Magnetostructural effects in exchange-spring nanocomposite magnets probed by combined X-ray & neutron scatteringcitations
  • 2019Novel in situ powder neutron diffraction setups – The creation of a modern magnetic compoundcitations
  • 2019Air-heated solid–gas reaction setup for in situ neutron powder diffraction5citations
  • 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanol13citations
  • 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanol13citations
  • 2019Laboratory setup for rapid in situ powder X-ray diffraction elucidating Ni particle formation in supercritical methanol8citations
  • 2018Crystalline and magnetic structure-property relationship in spinel ferrite nanoparticles139citations
  • 2018Nanoengineered High-Performance Hexaferrite Magnets by Morphology-Induced Alignment of Tailored Nanoplatelets49citations
  • 2018X-ray and neutron diffraction magnetostructural investigations on exchange-coupled nanocomposite magnetscitations
  • 2018Koercivitetsforbedring af strontium hexaferrit nano-krystallitter gennem morfologikontrolleret udglødning. ; Coercivity enhancement of strontium hexaferrite nano-crystallites through morphology controlled annealing35citations
  • 2018Structural evolution and stability of Sc 2 (WO 4 ) 3 after discharge in a sodium-based electrochemical cell11citations
  • 2018Approaching Ferrite-Based Exchange-Coupled Nanocomposites as Permanent Magnets32citations
  • 2018Coercivity enhancement of strontium hexaferrite nano-crystallites through morphology controlled annealing35citations
  • 2017Optimization of spring exchange coupled ferrites, studied by in situ neutron diffraction.citations
  • 2016Continuous Flow Supercritical Water Synthesis and Temperature-Dependent Defect Structure Analysis of YAG and YbAG Nanoparticles9citations
  • 2016Energy Product Enhancement in Imperfectly Exchange-Coupled Nanocomposite Magnets57citations
  • 2016Towards atomistic understanding of polymorphism in the solvothermal synthesis of ZrO 2 nanoparticles46citations
  • 2016Towards atomistic understanding of polymorphism in the solvothermal synthesis of ZrO2 nanoparticles46citations
  • 2014Coupling in situ synchrotron radiation with ex situ spectroscopy characterizations to study the formation of Ba1−xSrxTiO3 nanoparticles in supercritical fluids50citations
  • 2014Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca3Co4O921citations
  • 2014Metal distribution and disorder in the crystal structure of [NH2Et2][Cr7MF8(tBuCO2)16] wheel molecules for M = Mn, Fe, Co, Ni, Cu, Zn and Cd11citations
  • 2014Evolution of atomic structure during nanoparticle formation47citations
  • 2014Characterization of the interface between an Fe–Cr alloy and the p -type thermoelectric oxide Ca 3 Co 4 O 921citations
  • 2013In-situ synchrotron PXRD study of spinel LiMn2O4 nanocrystal formationcitations
  • 2013IN-SITU SYNCHROTRON PXRD STUDY OF SPINEL TYPE LiMn2O4 NANOCRYSTAL FORMATIONcitations
  • 2013Pressure versus temperature effects on intramolecular electron transfer in mixed-valence complexes15citations
  • 2012Investigation of the correlation between stoichiometry and thermoelectric properties in a PtSb2 single crystal11citations
  • 2012Low Cost High Performance Zinc Antimonide Thin Films for Thermoelectric Applications64citations
  • 2005Nanostructured Co1-xNix(Sb1-yTey)3 skutterudites: theoretical modeling, synthesis and thermoelectric properties85citations

Places of action

Chart of shared publication
Gjørup, Frederik Holm
14 / 17 shared
Mørch, Mathias I.
10 / 10 shared
Vijayan, Harikrishnan
3 / 3 shared
Shyam, Priyank
8 / 9 shared
Jørgensen, Mads Ry Vogel
2 / 24 shared
Laursen, Amalie P.
4 / 4 shared
Frandsen, Jens Plum
1 / 1 shared
Saura-Múzquiz, Matilde
14 / 15 shared
Andersen, Henrik L.
4 / 5 shared
Jensen, Kirsten Marie
1 / 6 shared
Granados-Miralles, Cecilia
10 / 12 shared
Gjørup, Frederik H.
1 / 3 shared
Frandsen, Jens P.
1 / 1 shared
Jørgensen, Mads R. V.
2 / 6 shared
Andersen, Henrik Lyder
10 / 10 shared
Eikeland, Anna Zink
3 / 3 shared
Stingaciu, Marian
6 / 8 shared
Simonsen, Jesper
1 / 1 shared
Kantor, Innokenty
1 / 19 shared
Eikeland, Anna Z.
2 / 2 shared
Albino, Martin
1 / 5 shared
Innocenti, Claudia
1 / 5 shared
Ibarra, M. Ricardo
1 / 27 shared
Bertoni, Giovanni
2 / 11 shared
Sangregorio, Claudio
2 / 16 shared
De Juliãn Fernãndez, Cãsar
1 / 1 shared
Petrecca, Michele
1 / 4 shared
Marquina, Clara
1 / 4 shared
Muzzi, Beatrice
1 / 5 shared
Avdeev, Maxim
2 / 13 shared
Henry, Killian
1 / 1 shared
Ahlburg, Jakob Voldum
18 / 21 shared
Saura-Muzquiz, Matilde
1 / 1 shared
Pillai, Harikrishnan Vijayan
2 / 2 shared
Povlsen, Amalie
3 / 3 shared
Thomas-Hunt, Jack
2 / 2 shared
Mamakhel, Aref
2 / 21 shared
Kessler, Tommy Ole
4 / 4 shared
Knudsen, Cecilie Grønvaldt
2 / 2 shared
Vijayan Pillai, Harikrishnan
1 / 1 shared
Mandziak, Anna
1 / 5 shared
Quesada, Adrián
3 / 11 shared
De La Figuera, Juan
1 / 7 shared
Jenuš, Petra
1 / 2 shared
Soria, Guiomar D.
1 / 3 shared
Fernández, José F.
2 / 7 shared
Foerster, Michael
1 / 31 shared
Aballe, Lucía
1 / 12 shared
Menhinnitt, Zach
1 / 1 shared
Lamagni, Paolo
3 / 6 shared
Skrydstrup, Troels
3 / 6 shared
Hvid, Mathias S.
1 / 4 shared
Lock, Nina
6 / 21 shared
Daasbjerg, Kim
3 / 21 shared
Hu, Xin Ming
1 / 2 shared
Jeppesen, Henrik S.
1 / 7 shared
Miola, Matteo
3 / 10 shared
Madsen, Monica R.
2 / 2 shared
Mamakhel, Mohammad Aref H.
3 / 3 shared
Catalano, Jacopo
3 / 6 shared
Rohde Madsen, Monica
1 / 1 shared
Hvid, Mathias
2 / 2 shared
Saerkjaer Jeppesen, Henrik
1 / 2 shared
Hu, Xinming
1 / 1 shared
Jeppesen, Henrik
1 / 4 shared
Garbus, Pelle Gorm
2 / 2 shared
Hölscher, Jennifer
1 / 1 shared
Smith, Ron
2 / 3 shared
Henry, Paul
2 / 6 shared
Canévet, Emmanuel
3 / 3 shared
Wang, Shuzhong
2 / 2 shared
Sun, Panpan
2 / 2 shared
Mamakhel, Mohammad Aref Hasen
1 / 3 shared
Granados, Cecilia
1 / 1 shared
Eikeland, Anna
1 / 1 shared
Frederik, H. Gjørup
1 / 1 shared
Schulz, Bernd
1 / 3 shared
Liu, Junnan
1 / 1 shared
Al Bahri, Othman K.
1 / 1 shared
Tsarev, Sergey
1 / 3 shared
Johannessen, Bernt
1 / 3 shared
Sharma, Neeraj
1 / 15 shared
Brand, Helen E. A.
1 / 2 shared
Dippel, Ann-Christin
1 / 29 shared
Jensen, Kirsten Marie Ørnsbjerg
3 / 6 shared
Nørby, Peter
1 / 7 shared
Quesada, Adrian
1 / 7 shared
Erokhin, Sergey
1 / 5 shared
Berkov, Dmitry
1 / 5 shared
Fernández, Jose F.
1 / 3 shared
Pedrosa, Javier
1 / 1 shared
Bollero, Alberto
1 / 2 shared
Aragón, Ana M.
1 / 1 shared
López-Ortega, Alberto
1 / 9 shared
Rubio-Marcos, Fernando
1 / 6 shared
Fernández, César De Julián
1 / 1 shared
Lottini, Elisabetta
1 / 1 shared
Billinge, Simon J. L.
3 / 12 shared
Birgisson, Steinar
4 / 6 shared
Bøjesen, Espen D.
1 / 5 shared
Jensen, Kirsten M. Ø.
3 / 19 shared
Iversen, Bo B.
9 / 31 shared
Bremholm, Martin
2 / 27 shared
Tyrsted, Christoffer
5 / 5 shared
Dippel, Ann Christin
2 / 5 shared
Saha, Dipankar
2 / 7 shared
Bøjesen, Espen Drath
5 / 15 shared
Elissalde, Catherine
1 / 79 shared
Philippot, Gilles
1 / 22 shared
Aymonier, Cyril
1 / 50 shared
Maglione, Mario
1 / 109 shared
Holgate, Tim
2 / 8 shared
Pryds, Nini
2 / 133 shared
Van Nong, Ngo
3 / 50 shared
Han, Li
2 / 20 shared
Wu, Ningyu
2 / 7 shared
Larsen, Finn Krebs
1 / 1 shared
Mcintyre, Garry James
1 / 1 shared
Timco, Grigore A.
2 / 12 shared
Winpenny, Richard E. P.
1 / 15 shared
Overgaard, Jacob
2 / 18 shared
Jensen, Kirsten M. O.
1 / 1 shared
Vaughan, Gavin
1 / 12 shared
Emerich, Hermann
1 / 1 shared
Bojesen, Espen D.
1 / 2 shared
Bülow, Jon Fold Von
2 / 2 shared
Christiansen, Troels Lindahl
2 / 5 shared
Scheins, Stephan
1 / 1 shared
Chen, Yu Sheng
1 / 3 shared
Madsen, Solveig R.
1 / 2 shared
Larsen, Finn K.
1 / 2 shared
Schmøkel, Mette S.
1 / 1 shared
Stash, Adam
1 / 1 shared
Steglich, Frank
1 / 3 shared
Sun, Peijie
1 / 2 shared
Bjerg, Lasse
1 / 3 shared
Søndergaard, Martin
1 / 5 shared
Borup, Kasper A.
1 / 3 shared
Bøttiger, Jørgen
1 / 2 shared
Sun, Ye
1 / 1 shared
Johnsen, Simon
1 / 5 shared
Palmqvist, Anders E. C.
1 / 4 shared
Ma, Yi
1 / 1 shared
Zhang, Eryun
1 / 1 shared
Sillassen, Michael
1 / 3 shared
Platzek, Dieter
1 / 1 shared
Williams, Simon
1 / 1 shared
Stiewe, Christian
1 / 2 shared
Rowe, David Michael
1 / 1 shared
Muller, Eckhard
1 / 2 shared
Muhammad, Mamoun
1 / 1 shared
Gatti, Carlo
1 / 9 shared
Toprak, Muhammet
1 / 1 shared
Bertini, Luca
1 / 2 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2017
2016
2014
2013
2012
2005

Co-Authors (by relevance)

  • Gjørup, Frederik Holm
  • Mørch, Mathias I.
  • Vijayan, Harikrishnan
  • Shyam, Priyank
  • Jørgensen, Mads Ry Vogel
  • Laursen, Amalie P.
  • Frandsen, Jens Plum
  • Saura-Múzquiz, Matilde
  • Andersen, Henrik L.
  • Jensen, Kirsten Marie
  • Granados-Miralles, Cecilia
  • Gjørup, Frederik H.
  • Frandsen, Jens P.
  • Jørgensen, Mads R. V.
  • Andersen, Henrik Lyder
  • Eikeland, Anna Zink
  • Stingaciu, Marian
  • Simonsen, Jesper
  • Kantor, Innokenty
  • Eikeland, Anna Z.
  • Albino, Martin
  • Innocenti, Claudia
  • Ibarra, M. Ricardo
  • Bertoni, Giovanni
  • Sangregorio, Claudio
  • De Juliãn Fernãndez, Cãsar
  • Petrecca, Michele
  • Marquina, Clara
  • Muzzi, Beatrice
  • Avdeev, Maxim
  • Henry, Killian
  • Ahlburg, Jakob Voldum
  • Saura-Muzquiz, Matilde
  • Pillai, Harikrishnan Vijayan
  • Povlsen, Amalie
  • Thomas-Hunt, Jack
  • Mamakhel, Aref
  • Kessler, Tommy Ole
  • Knudsen, Cecilie Grønvaldt
  • Vijayan Pillai, Harikrishnan
  • Mandziak, Anna
  • Quesada, Adrián
  • De La Figuera, Juan
  • Jenuš, Petra
  • Soria, Guiomar D.
  • Fernández, José F.
  • Foerster, Michael
  • Aballe, Lucía
  • Menhinnitt, Zach
  • Lamagni, Paolo
  • Skrydstrup, Troels
  • Hvid, Mathias S.
  • Lock, Nina
  • Daasbjerg, Kim
  • Hu, Xin Ming
  • Jeppesen, Henrik S.
  • Miola, Matteo
  • Madsen, Monica R.
  • Mamakhel, Mohammad Aref H.
  • Catalano, Jacopo
  • Rohde Madsen, Monica
  • Hvid, Mathias
  • Saerkjaer Jeppesen, Henrik
  • Hu, Xinming
  • Jeppesen, Henrik
  • Garbus, Pelle Gorm
  • Hölscher, Jennifer
  • Smith, Ron
  • Henry, Paul
  • Canévet, Emmanuel
  • Wang, Shuzhong
  • Sun, Panpan
  • Mamakhel, Mohammad Aref Hasen
  • Granados, Cecilia
  • Eikeland, Anna
  • Frederik, H. Gjørup
  • Schulz, Bernd
  • Liu, Junnan
  • Al Bahri, Othman K.
  • Tsarev, Sergey
  • Johannessen, Bernt
  • Sharma, Neeraj
  • Brand, Helen E. A.
  • Dippel, Ann-Christin
  • Jensen, Kirsten Marie Ørnsbjerg
  • Nørby, Peter
  • Quesada, Adrian
  • Erokhin, Sergey
  • Berkov, Dmitry
  • Fernández, Jose F.
  • Pedrosa, Javier
  • Bollero, Alberto
  • Aragón, Ana M.
  • López-Ortega, Alberto
  • Rubio-Marcos, Fernando
  • Fernández, César De Julián
  • Lottini, Elisabetta
  • Billinge, Simon J. L.
  • Birgisson, Steinar
  • Bøjesen, Espen D.
  • Jensen, Kirsten M. Ø.
  • Iversen, Bo B.
  • Bremholm, Martin
  • Tyrsted, Christoffer
  • Dippel, Ann Christin
  • Saha, Dipankar
  • Bøjesen, Espen Drath
  • Elissalde, Catherine
  • Philippot, Gilles
  • Aymonier, Cyril
  • Maglione, Mario
  • Holgate, Tim
  • Pryds, Nini
  • Van Nong, Ngo
  • Han, Li
  • Wu, Ningyu
  • Larsen, Finn Krebs
  • Mcintyre, Garry James
  • Timco, Grigore A.
  • Winpenny, Richard E. P.
  • Overgaard, Jacob
  • Jensen, Kirsten M. O.
  • Vaughan, Gavin
  • Emerich, Hermann
  • Bojesen, Espen D.
  • Bülow, Jon Fold Von
  • Christiansen, Troels Lindahl
  • Scheins, Stephan
  • Chen, Yu Sheng
  • Madsen, Solveig R.
  • Larsen, Finn K.
  • Schmøkel, Mette S.
  • Stash, Adam
  • Steglich, Frank
  • Sun, Peijie
  • Bjerg, Lasse
  • Søndergaard, Martin
  • Borup, Kasper A.
  • Bøttiger, Jørgen
  • Sun, Ye
  • Johnsen, Simon
  • Palmqvist, Anders E. C.
  • Ma, Yi
  • Zhang, Eryun
  • Sillassen, Michael
  • Platzek, Dieter
  • Williams, Simon
  • Stiewe, Christian
  • Rowe, David Michael
  • Muller, Eckhard
  • Muhammad, Mamoun
  • Gatti, Carlo
  • Toprak, Muhammet
  • Bertini, Luca
OrganizationsLocationPeople

document

‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnets

  • Gjørup, Frederik Holm
  • Stingaciu, Marian
  • Pillai, Harikrishnan Vijayan
  • Kessler, Tommy Ole
  • Mørch, Mathias I.
  • Christensen, Mogens
  • Shyam, Priyank
  • Povlsen, Amalie
  • Knudsen, Cecilie Grønvaldt
Abstract

The magnetic behaviour of a permanent magnet emerges hierarchically over 6 orders of magnitude in length scales – from the atomic to the macro scale.[1] Intrinsic magnetic properties are determined by the underlying atomic &amp; crystalline structure. Microstructural features like crystallite morphologies/sizes influence extrinsic magnetic behaviour.[2] The structure at the atomic- &amp; nanoscale are effectively controlled by the material synthesis and numerous studies have focused on controlling these structures to tune magnetic properties.[3] However, for real-world applications, the nanoparticulate powders must be compacted. The crystallographic texture of the consolidated product is a key influencer on final performance. The proverbial “last mile” consolidation of loose nano powders with optimal magnetic properties to dense magnets is barely studied in literature and the effect of resultant texture on magnetic properties is even less understood. [2,4] Therefore, to truly optimize the magnetic performance of the final material, it is important to understand &amp; control the structure at all hierarchical length scales.<br/>The consolidation of magnets is typically done either by mechanical compaction followed by sintering in conventional furnaces OR via hot compaction using complicated setups e.g., spark plasma sintering. The influence of the consolidation process on the final magnet’s structure and resultant properties has been conventionally studied in a ‘black-box’ manner. The structure of the final magnet is studied ex-situ, post-mortem via diffraction techniques and the impact on the magnetic performance is assessed.[4] Control over the composition &amp; structure over multiple length scales is limited. Adding to it, consolidation affects the magnetic properties non-trivially, making optimization a tedious ‘trial-and-error’ process. A recently developed method – ultrafast high-temperature sintering (UHS) – reported by Wang et.al. (Science, May 2020) holds the potential to overcome these problems.[5] It operates on the principle of resistive Joule heating of carbon strips in an inert atmosphere to sinter compacted pellets. It allows for mechanical stability after fast sintering (~10s) at high temperatures (~3000ºC) with rapid heating rates (~104 ºC/min) and has been shown to successfully sinter ceramic materials with multiple phases while retaining stoichiometry and optimal grain sizes. However, knowledge of the structural evolution processes during sintering is still limited and the ‘black-box’ problem remains! <br/>To address this gap in knowledge, our group at Aarhus University has developed a custom-built furnace and sample environment - the Aarhus Rapid Ωhmic Sintering (AROS) sample environment - based on the UHS principle. The AROS setup combines the high temperature, rapid heating capabilities with the ability to use high-energy transmitted X-rays to probe the bulk structural evolution processes in situ &amp; in real-time during sintering (Fig. 1). In this presentation, the capabilities of the AROS setup will be discussed. In August 2021, the AROS setup was tested at P02.1 to sinter pre-compacted pellets of iron oxide nanoparticles at elevated temperatures (900°C to 1200°C) in vacuum/inert atmosphere.The experiment investigated the formation of magnetic SrFe12O19 from non-magnetic anisotropic shaped nanocrystallites: FexOy (nano-shaped) + Sr2+ → SrFe12O19.[6] Continuously collected diffraction data at P02.1 provided information on phase transformation, crystallite growth &amp; induced texture evolution processes in situ &amp; in real-time. Results &amp; insights from this test experiment probing the sintering process with unprecedented detail will also be presented. These investigations on the sintering process in situ provide crucial details towards plugging the “last mile” consolidation gap and enable the development of stronger permanent magnets in the future. Beyond this, the results help shed light on the dynamics of the densification/consolidation process with significant relevance to the science of materials sintering.<br/><br/>References:[1] (a) Leslie-Pelecky, D.L., &amp; Rieke, R.D.,Chem. Mater. 8, 1770 (1996). (DOI:10.1021/cm960077f) (b) Skomski, R., J. Phys. Condens. Matter. 15, R841 (2003). (DOI:10.1088/0953-8984/15/20/202)<br/>[2] Sander, D. et.al., Phys. D. Appl. Phys. 50, 363001 (2017). (DOI:10.1088/1361-6463/aa81a1)<br/>[3] (a) Mohseni, F. et.al., J. Alloys Compd. 806, 120 (2019). (DOI:10.1016/j.jallcom.2019.07.162) (b) Volodchenkov, A.D. et.al., J. Mater. Sci. 54, 8276 (2019). (DOI:10.1007/s10853-019-03323-z) (c) Volodchenkov, A.D. et. al., J. Mater. Chem. C. 4, 5593 (2016). (DOI:10.1039/C6TC01300G) (d) Liu, F. et. al., Chem. Soc. Rev. 43, 8098 (2014). (DOI:10.1039/C4CS00162A)<br/>[4] (a) Skokov, K.P., &amp; Gutfleisch, O.,Scr. Mater. 154, 289 (2018). (DOI:10.1016/j.scriptamat.2018.01.032) (b) Saura-Múzquiz, M. et.al., Nanoscale. 12, 9481 (2020). (DOI:10.1039/D0NR01728K...

Topics
  • nanoparticle
  • impedance spectroscopy
  • Carbon
  • grain
  • grain size
  • phase
  • experiment
  • laser emission spectroscopy
  • anisotropic
  • texture
  • iron
  • ceramic
  • sintering
  • densification