Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gager, Victor

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Hygro-mechanical behaviour of non-woven biocomposites with moisture variationscitations

Places of action

Chart of shared publication
Duigou, Antoine Le
1 / 30 shared
Bourmaud, Alain
1 / 61 shared
Baley, Christophe
1 / 61 shared
Behlouli, Karim
1 / 8 shared
Pierre, Floran
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Duigou, Antoine Le
  • Bourmaud, Alain
  • Baley, Christophe
  • Behlouli, Karim
  • Pierre, Floran
OrganizationsLocationPeople

document

Hygro-mechanical behaviour of non-woven biocomposites with moisture variations

  • Duigou, Antoine Le
  • Bourmaud, Alain
  • Baley, Christophe
  • Behlouli, Karim
  • Pierre, Floran
  • Gager, Victor
Abstract

This study investigates the evolution of hygromechanical properties of flax/PP nonwoven composites in a wide range of environmental Relative Humidity conditions from 10 to 98% RH. The influence of microstructure with various porosity content (Φ = 5, 30, 50%) on the mechanical and hygroscopic behaviours is studied. The porosity greatly impacts the kinetic of sorption with moisture saturation varying from 9 hours to 15 days with decreasing voids. Tensile behaviour and properties are slightly changed over a range of 10-75% RH but negatively impacted between 75% and 98% RH. Interestingly, unlike the tangent tensile modulus and strain at rupture of flax/PP composites, the yield strength increases until 50% RH and stabilizes over this point; compressive stresses at the fibre/matrix interface induced by flax fibres hygroexpansion are proposed to explain this trend. A quasi-monotonous decrease is also observed in bending properties with the increase in water content in the material.

Topics
  • impedance spectroscopy
  • strength
  • composite
  • yield strength
  • void
  • porosity
  • woven