People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Faria, Paulina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (47/47 displayed)
- 2024Innovative MOS-based fiber cement boardscitations
- 2024A feasible re-use of an agro-industrial by-productcitations
- 2024Can mussel shell waste optimize cement and air lime mortars hygrothermal performance?
- 2024A feasible re-use of an agro-industrial by-product ; Hazelnut shells as high-mass bio-aggregate in boards for indoor applicationscitations
- 2024Effect of Cow Dung Additions on Tropical and Mediterranean Earth Mortars-Mechanical Performance and Water Resistancecitations
- 2023Assessment of the physical-mechanical performance of magnesium oxide-based fiber cement submitted toaccelerated carbonation
- 2023New Trends on Bio-cementation and Self-healing Testingcitations
- 2023Effectiveness of alkaline and hydrothermal treatments on cellulosic fibers extracted from the Moroccan Pennisetum Alopecuroides plantcitations
- 2023Assessment of the physical-mechanical performance of magnesium-based fiber cement submitted to accelerated carbonation
- 2023Influence of Natural Sand Replacement by Mineral Wastes on Earth and Air Lime Plastering Mortars, and Professionals Training
- 2021Use of Mixed Microbial Cultures to Protect Recycled Concrete Surfaces: A Preliminary Studycitations
- 2021Characterization of agro-wastes to be used as aggregates for eco-efficient insulation boards
- 2021Use of mixed microbial cultures to protect recycled concrete surfaces ; A preliminary studycitations
- 2021Assessment of durability of biobased earth compositescitations
- 2021Effect of innovative bioproducts on air lime mortarscitations
- 2020Characterization of earthen plasters – Influence of formulation and experimental methods
- 2020Natural hydraulic lime mortars - The effect of ceramic residues on physical and mechanical behaviourcitations
- 2020Avaliação do envelhecimento natural e de tratamentos superficiais ecológicos em rebocos de terracitations
- 2020Assessment on tungsten mining residues potential as partial cement replacementcitations
- 2020Assessment on tungsten mining residues potential as partial cement replacementcitations
- 2020Biodegradable polymers on cementitious materialscitations
- 2019Experimental assessment of bio-based earth bricks durabilitycitations
- 2019It’s what’s inside that counts ; an assessment method to measure the residual strength of anobiids infested timber using micro-computed tomography
- 2019Rice husk-earth based composites: A novel bio-based panel for buildings refurbishmentcitations
- 2019The compatibility of earth-based repair mortars with rammed earth substratescitations
- 2019It’s what’s inside that counts
- 2018Earth-based mortars for repair and protection of rammed earth walls. Stabilization with mineral binders and fiberscitations
- 2018Eco-friendly healing agents for recycled concrete
- 2017New composite of natural hydraulic lime mortar with graphene oxidecitations
- 2016Assessment of photocatalytic capacity of a hydraulic mortar
- 2016Anomaly diagnosis in ceramic claddings by thermography - A review
- 2016Improving building technologies with a sustainable strategycitations
- 2015Characterization tests for insulation boards made from corn cob and natural glues
- 2015Natural hydraulic lime (nhl3.5) mortars with scrap tire rubber ; СУХИЕ СТРОИТЕЛЬНЫЕ СМЕСИ НА ОСНОВЕ ПРИРОДНОЙ ГИДРАВЛИЧЕСКОЙ ИЗВЕСТИ (NHL 3.5) С ДОБАВКОЙ РЕЗИНОВОЙ КРОШКИ, ПОЛУЧЕННОЙ ИЗ ОТРАБОТАННЫХ ПОКРЫШЕК (in Russian)
- 2015NHL 3.5 mortars with scrap tire rubber
- 2015NHL 3.5 MORTARS WITH SCRAP TIRE RUBBER
- 2015Natural hydraulic lime (NHL3.5) mortars with scrap tire rubber
- 2015Characterization of earth-based mortars for rammed earth repair
- 2014Air lime-earth blended mortars - Assessment on fresh state and workability
- 2013Natural hydraulic lime mortars: influence of the aggregates
- 2013Evaluation of air lime and clayish earth mortars for earthen wall renders
- 2013Performance assessment of waste fibre-reinforced mortar
- 2013The compatibility of earth-based repair mortars with rammed earth substrates
- 2013Cement-cork mortars for thermal bridges correction. Comparison with cement-EPS mortars performancecitations
- 2012Earth-based repair mortars: Experimental analysis with different binders and natural fibers
- 2012Textile waste fiber-reinforced mortar: performance evaluation
- 2007Development of biocolonization resistant mortarscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Characterization of agro-wastes to be used as aggregates for eco-efficient insulation boards
Abstract
This work derives from the awareness of the environmental impacts caused by the construction sector. Since building products are one of the main causes of this issue, the incremental use of local natural eco-friendly materials can moderate this problem, guaranteeing lower energy consumption for production and transport. Nowadays, research is increasingly focused on the possibility of using bio-wastes to produce several materials and products such as plasters, bricks, boards, binders and glues. They can secure both more sustainable building practices and contribute to solve the problems of disposal of wastes, another cause of the environmental impacts.<br/>The present work focuses on the characterization of some bio-wastes to assess their viability as aggregates for eco-efficient insulation boards. Knowing the properties of the raw materials allows making a more conscious choice of composite formulations according to the final requirements of the boards. For this reason, the bio-wastes from agricultural practices (agro-wastes) were studied individually. To evaluate their properties, the analysis was carried out according to RILEM Technical Committee 236-BBM, “Bio-aggregate-based building Materials” document, past literature studies and European Standards. The considered properties were loose bulk density, grain size distribution and thermal conductivity.<br/>Four agro-wastes were chosen: spent coffee grounds, grapes press waste, olives press waste and hazelnut shells. Maritime pine (Pinus pinaster Ait.) chips were included as control material. They have been considered both for their potential use to produce insulation composites and for their world production, focusing on Euro-Mediterranean countries. This region was chosen taking into account where the future research will be carried out and the advantages of employing local materials. In addition, buildings of Euro-Mediterranean countries have historically low insulation performance due to the mild climate; however, climate change and other factors have led to the recognition by the users of some periods of poor indoor hygrothermal comfort. The bibliographic research allowed identifying a gap as concerns the characterization of these agro-wastes.<br/>Both the testing methods and the properties of the considered materials are presented and discussed. In addition, the obtained results are compared with the ones of already studied materials, such as rice husk, hemp shiv and cork. Results show that the chosen materials do not have excellent insulating properties if considered individually but may probably be used to produce eco-efficient boards. The combination of them with other materials could guarantee building composites with good thermal insulation performances. The spent coffee ground differs greatly from the other bio-wastes and it seems to be more appropriate as a fine aggregate. Future research will deepen these studies and develop composites having adequate characteristics as insulation boards.