People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bodnarova, Lenka
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2021The Effect of the Composition of a Concrete Mixture on Its Volume Changescitations
- 2020Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concretecitations
- 2020Effect of type of aggregate on abrasion resistance of concrete
- 2019Effect of Inorganic SiO2 Nanofibers in High Strength Cementitious Compositescitations
- 2019Erosion Test with High-speed Water Jet Applied on Surface of Concrete Treated with Solution of Modified Lithium Silicatescitations
- 2018Effect of Inorganic SiO2 Nanofibers in High Strength Cementitious Composites
- 2018Study On The Resistance Of High-Performance Concrete To The Selected Chemically Aggressive Environments
- 2018The Effect Of The Addition Of Multi-Walled Carbon Nanotubes On The Properties Of Cementitious Composites
- 2017Impact-Echo Method Used to Testing of High Temperature Degraded Concrete Composite of Portland Cement CEM I 42.5 R and Gravel Aggregate 8/16
- 2017Non-Destructive Testing of High Temperature Degraded Concrete Composite of Portland Cement CEM I 42.5 R and Gravel Aggregate 11/22 by Transverse Wavescitations
- 2016Reduction of concrete´s shrinkage by controlled formation of monosulphate and trisulphate
- 2016Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concretecitations
- 2016POSSIBILITIES OF DETERMINATION OF OPTIMAL DOSAGE OF POWER PLANT FLY ASH FOR CONCRETEcitations
- 2015CHANGES OF CONCRETE CHEMICAL COMPOSITION DUE TO THERMAL LOADING DETECTED BY DTA ANALYSIS
- 2015Development of High-Volume High Temperature Fly Ash Concretecitations
Places of action
Organizations | Location | People |
---|
document
The Effect Of The Addition Of Multi-Walled Carbon Nanotubes On The Properties Of Cementitious Composites
Abstract
This paper presents the results of research focused on the application of nanoparticles to cement composites. The effect of the addition of carbon nanotubes (CNT) on the mechanical properties of cement composites has been verified. Five recipes were tested to compare the effectiveness of CNT, one of which served as a reference, and the remaining contained different amounts of CNT (0.001 %, 0.005 %, 0.01 %, and 0.05 % by weight of cement). The compression strength and flexural strength of cementitious composites were monitored. The best results in the determination of the compressive strength were achieved at a rate of 0.01 % CNT for the amount of cement. For flexural strength determination, the best results were achieved with 0.01 % and 0.05 % dose of CNT. The optimal dosing of TNM7 multilayer CNT based on the executed formulations ranged from 0.01 % to 0.05 % by weight of the cement. The CNT dose in order of centesimal per cent of the weight of the cement had a significant effect on the flexural strength (after 28 days an increase of approximately 19 %), as well as on compressive strength, where the compressive strength showed an increase of about 9 % after 28 days.