People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rajagopalan, Narayanan
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Protective Mechanisms of Siloxane-Modified Epoxy Novolac Coatings at High-Pressure, High-Temperature Conditions
- 2024Lignin Phosphate: A Biobased Substitute for Zinc Phosphate in Corrosion-Inhibiting Coatingscitations
- 2024Protective Mechanisms of Siloxane-Modified Epoxy Novolac Coatings at High-Pressure, High-Temperature Conditions
- 2024Lignin Phosphate: A Biobased Substitute for Zinc Phosphate in Corrosion-Inhibiting Coatingscitations
- 2023Incorporation of unmodified technical Kraft lignin particles in anticorrosive epoxy novolac coatings
- 2023Incorporation of unmodified technical Kraft lignin particles in anticorrosive epoxy novolac coatings
- 2023Chemically-resistant epoxy novolac coatings: Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing componentcitations
- 2023Chemically-resistant epoxy novolac coatings: Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing componentcitations
- 2023Chemically-resistant epoxy novolac coatings : Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing componentcitations
- 2021The influence of CO2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coatingcitations
- 2021Degradation pathways of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures
- 2021Degradation pathways of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures
- 2021The influence of CO 2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coatingcitations
Places of action
Organizations | Location | People |
---|
document
Degradation pathways of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures
Abstract
The ever-rising energy demands are driving the petroleum industry to explore fossil fuels from geologic formations that show conditions of abnormal high pressures and high temperatures, universally known as HPHT conditions [1]. Conditions of HPHT in the downhole oilfield applications are of major concern because of the high demands of the materials involved, and the presence of seawater in the pipeline liquids makes corrosion a pervasive issue across the industry. Furthermore, the HPHT fields encompassing a gas phase, a hydrocarbon phase, and a seawater phase, combined with high temperature and high-pressure conditions, can result in extensive coating degradation and defects. In general, this extremity of the HPHT zone tends to accelerate the material degradation processes, forcing early and costly replacements. For this reason, process equipment, wells, tanks, and pipelines in the HPHT zones are often protected with high-performance epoxy-based anti-corrosive coatings.<br/><br/>However, the durability and/or degradability of these highly cross-linked coating systems under the HPHT conditions (including the gases such as N2 and CO2, combined with a mixture of hydrocarbon fluids and artificial seawater) are rarely reported in the open literature and the underlying mechanisms remain largely unexplored. Furthermore, Rapid Gas Decompression (RGD), i.e., when depressurization to ambient conditions takes place during emergency shutdowns, can also lead to failures (e.g., crack initiation and growth in cross-linked networks) caused by the fast release of HPHT phases dissolved in the coating. Consequently, in the present study, the largely unexplored degradation pathways for amine-cured epoxy novolac (EN) and bisphenol F (BPF) epoxy resins at HPHT are investigated under lower limits of HPHT.