People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hughes, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Exploring the potential of steel slag waste for carbon sequestration through mineral carbonationcitations
- 2024Mineral wastescitations
- 2024Critical methods of geopolymer feedstocks activation for suitable industrial applicationscitations
- 2024Recovering the properties of aged bitumen using bio-rejuvenators derived from municipal wastescitations
- 2023Sintered Bottom and Vitrified Silica Ashes Derived from Incinerated Municipal Solid Waste as Circular Economy-Friendly Partial Replacements for Cement in Mortarscitations
- 2023Porosity-dependent stability analysis of bio-inspired cellular nanocomposite shellscitations
- 2023Feasibility evaluation of bio-waste derived, plastic-waste modified binder rejuvenatorscitations
- 2021Mechanical behaviour of soil waste-derived geopolymer mixtures for construction
- 2020Disposal and Recovery Approaches for Reinforced Plastic Productscitations
- 20193D printing of intricate sand cores for complex copper castings
- 2018Comparison of impact energy absorbance by various combinations of hip protector and flooring materialcitations
- 2018Water vapor sorption and glass transition temperatures of phase-separated amorphous blends of hydrophobically-modified starch and sucrosecitations
- 2018Effect of Temperature on Conductivity of PLA-Carbon 3D Printed Components.
- 2012Characterisation of the performance of sustainable grout containing bentonite for geotechnical applications
- 2010Analysis of marine biofouling on R16 water injection riser, Schiehallion oilfield, west of Shetland.
- 2008Spontaneous spin polarization and electron localization in constrained geometries: The Wigner transition in nanowirescitations
Places of action
Organizations | Location | People |
---|
document
3D printing of intricate sand cores for complex copper castings
Abstract
Copper cast machine components are largely used in high temperature applications. Provision of internal water cooling channels in the cast, coupled with the high thermal conductivity of copper, enables cast components to perform reliably in extreme temperature ambient. However, creation of geometrically intricate internal structures in the cast is critical to improving component’s cooling efficiency and service life. Unfortunately, many of the ideal complex internal structures (cores) either cannot be manufactured using traditional methods or are not cost competitive.<br/><br/>This research focuses on the proof of concept. It demonstrates printing sand cores for employment in the manufacture of copper castings with complex inner cooling channels. The technique of binder jetting is used. A binder is selectively deposited onto a sand bed at room temperature to reduce dimensional distortions. The binder jetted sand is printed into cores. The cores are placed into a sand mould and filled with molten copper. <br/><br/>Simulation method is employed to determine the properties of the printed cores. The results are compared with that of traditional cast samples. It is found that the printed cores have consistent properties compared with the handmade cores. The surface roughness of the internal core faces is 2.03 Ra (μm). Finning is not present due to the absence of split lines found in most traditional sand cores. <br/><br/>The use of binder jetting technique increases manufacturability of intricate geometric cores for copper sand casting.<br/>