People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amalu, Dr Emeka
Teesside University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Mineral wastescitations
- 2024Effect of Creep, Fatigue and Random Vibration on the Integrity of Solder Joints in BGA Packagecitations
- 2024Critical methods of geopolymer feedstocks activation for suitable industrial applicationscitations
- 2024Critical solder joint in insulated gate bipolar transistors (IGBT) power module for improved mechanical reliabilitycitations
- 2023Characterising Solder Materials from Random Vibration Response of Their Interconnects in BGA Packagingcitations
- 2023Effects of Reflow Profile and Miniaturisation on the Integrity of Solder Joints in Surface Mount Chip Resistorscitations
- 2021Thermal fatigue life of ball grid array (BGA) solder joints made from different alloy compositionscitations
- 2020Comparing and benchmarking fatigue behaviours of various SAC solders under thermo-mechanical loadingcitations
- 2019Creep damage of BGA solder interconnects subjected to thermal cycling and isothermal ageingcitations
- 20193D printing of intricate sand cores for complex copper castings
- 2018Effect of Temperature on Conductivity of PLA-Carbon 3D Printed Components.
- 2016Effects of component stand-off height on reliability of solder joints in assembled electronic component
- 2015Effect of intermetallic compounds on thermo-mechanical reliability of lead-free solder joints in solar cell assembly
- 2015A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assemblycitations
- 2012High-temperature fatigue life of flip chip lead-free solder joints at varying component stand-off heightcitations
- 2012High temperature reliability of lead-free solder joints in a flip chip assemblycitations
- 2012Thermal management materials for electronic control unitcitations
- 2012Prediction of damage and fatigue life of high-temperature flip chip assembly interconnections at operationscitations
- 2011Effect of solder joint integrity on the thermal performance of a TEC for a 980nm pump laser module
Places of action
Organizations | Location | People |
---|
article
Effect of intermetallic compounds on thermo-mechanical reliability of lead-free solder joints in solar cell assembly
Abstract
The solder joints in crystalline silicon solar cell assembly undergo thermo-mechanical degradation during the device lifetime. The degradation is accelerated by the formation and growth of intermetallic compound, IMC, in a solder joint which contains copper and tin as alloying elements of the solder. This investigation quantifies the contribution of the presence of IMC in the joints on the reliability of the assembly. The study employs finite element modelling (FEM) to simulate the nonlinear deformation of SnAgCu solder joints in two models of crystalline silicon solar cell assembly. One of the models contains IMC in the interface joints between solder and copper ribbon while the other, which is the control, does not contain IMC in the joints. The degradation of the solder material is simulated using Garofalo-Arrhenius creep model. The geometric models were subjected to accelerated thermal cycling utilising IEC 61215 standard for photovoltaic panels. Analysis of the results of the creep strain profiles of the two models indicate that the deformation amplitude in the solder joint containing IMC is higher than that in the solder joint containing solder only. Similarly, it can be observed from the plot of strain energy density against load step that the solder joint containing solder+IMC have considerable higher strain energy density compared to solder only joint. This infers that the presence of IMC significantly impacts the thermomechanical reliability of the assembly joints. The results also demonstrate that IMC decreases the mean-time-to failure (MTTF) of the assembly joints.