People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Minty, Ross F.
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023The dependence of interfacial shear strength on temperature and matrix chemistry in glass fibre epoxy compositescitations
- 2022The influence of temperature and matrix chemistry on interfacial shear strength in glass fibre epoxy composites
- 2018Are silanes the primary driver of interface strength in glass fibre composites?
- 2018The influence of hardener-to-epoxy ratio on the interfacial strength in glass fibre reinforced epoxy compositescitations
- 2018Are silanes the primary driver of interface strength in glass fiber composites? An exploration of the relationship of chemical and physical parameters in the micromechanical characterisation of the apparent interfacial strength in glass fiber composites
- 2016The role of the epoxy resin
- 2015The role of the epoxy resin
Places of action
Organizations | Location | People |
---|
document
Are silanes the primary driver of interface strength in glass fibre composites?
Abstract
It is probably not an overstatement to say that organosilanes are the most important chemicals used in the glass fibre, and consequently the composites, industry. One of the best-known assertions about silanes is that they promote chemical bonding across the fibre-matrix interface. This concept was fixed in the collective consciousness of the composites community early in its history when developments were focussed strongly on reactive matrices. Indeed, the chemical bridging mindset is strongly entrenched in the interface research community and extends to most other fibre-matrix combinations. However, the development of thermoplastic matrix composites raises questions about the simplistic chemical bridging model of silanes at the interface. A growing number of researchers have also commented on residual stress contributing to the stress transfer capability at the fibre-matrix interface. We will review experimental data on the temperature dependence of the apparent interfacial shear strength (IFSS) in glass fibre-polypropylene and of glass fibre-epoxy composites. This phenomenon is characterised by a large drop in IFSS when the test temperature is raised above the matrix glass transition temperature. These results can be shown to support the hypothesis that the apparent IFSS in composites can be largely explained by residual thermal stresses in the system