People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kotsilkova, Rumiana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Improving Resistive Heating, Electrical and Thermal Properties of Graphene-Based Poly(Vinylidene Fluoride) Nanocomposites by Controlled 3D Printing
- 2024New Insights in the Nanomechanical Study of Carbon-Containing Nanocomposite Materials Based on High-Density Polyethylene
- 2024PVDF hybrid nanocomposites with graphene and carbon nanotubes and their thermoresistive and joule heating propertiescitations
- 2022Thermo‐Electric Properties of Poly(lactic) Acid Filled with Carbon‐Based Particles: Experimental and Simulation Studycitations
- 2022Thermal and Dielectric Properties of 3D Printed Parts Based on Polylactic Acid Filled with Carbon Nanostructurescitations
- 2022BIOPOLYMER NANOCOMPOSITES WITH GRAPHENE FOR 3D PRINTING APPLICATIONS: PROPERTIES AND SAFETY ISSUES
- 2021Tailoring the graphene oxide chemical structure and morphology as a key to polypropylene nanocomposite performancecitations
- 2020THz Spectroscopy as a Versatile Tool for Filler Distribution Diagnostics in Polymer Nanocompositescitations
- 2019PLA/Graphene/MWCNT Composites with Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applicationscitations
- 2019Effects of Graphene Nanoplatelets and Multiwall Carbon Nanotubes on the Structure and Mechanical Properties of Poly(lactic acid) Composites: A Comparative Studycitations
- 2018Tensile and Surface Mechanical Properties of Polyethersulphone (PES) and Polyvinylidene Fluoride (PVDF) Membranescitations
- 2018Morphological, Rheological and Electromagnetic Properties of Nanocarbon/Poly(lactic) Acid for 3D Printing: Solution Blending vs. Melt Mixingcitations
- 2018Influence of carbon nanotube surface treatment on resistivity and low‐frequency noise characteristics of epoxy‐based compositescitations
- 2017Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin filmscitations
- 2017Influence of polymer swelling and dissolution into food simulants on the release of graphene nanoplates and carbon nanotubes from poly(lactic) acid and polypropylene composite filmscitations
- 2017Main principles of passive devices based on graphene and carbon films in microwave - THz frequency rangecitations
- 2016Thermal, mechanical and viscoelastic properties of compatibilized polypropylene/multi-walled carbon nanotube nanocompositescitations
- 2016Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structurescitations
- 2014Strain Localisation in iPP/MWCNT Nanocomposites Using Digital Image Correlationcitations
- 2014EPR and Rheological Study of Hybrid Interfaces in Gold-Clay-Epoxy Nanocomposites.
- 2012Nanocomposites Based on ZnO Modified Polymer Blendscitations
- 2011Effects of processing conditions on rheological, thermal, and electrical properties of multiwall carbon nanotube/epoxy resin compositescitations
- 2011Polymer dynamics in epoxy/alumina nanocomposites studied by various techniquescitations
- 2010Isotactic polypropylene composites reinforced with multiwall carbon nanotubes, part 2: Thermal and mechanical properties related to the structurecitations
- 2008A study of transient and steady-state shear and normal stresses in glass fiber suspensions
- 2005Processing–structure–properties relationships of mechanically and thermally enhanced smectite/epoxy nanocompositescitations
- 2005Reinforcement effect of carbon nanofillers in an epoxy resin system: Rheology, molecular dynamics, and mechanical studiescitations
- 2004Rheological, electrical, and microwave properties of polymers with nanosized carbon particlescitations
Places of action
Organizations | Location | People |
---|
article
EPR and Rheological Study of Hybrid Interfaces in Gold-Clay-Epoxy Nanocomposites.
Abstract
With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge obtained from this study is applicable to understand the role of interfaces in ternary nanocomposites with different combinations of nanofillers.