Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bedel, Vincent

  • Google
  • 4
  • 4
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Dynamic electrical and mechanical properties of epoxy/silver nanowires composites3citations
  • 2019Innovative conductive polymer composite coating for aircrafts lightning strike protection11citations
  • 2018Influence of silver nanowires on thermal and electrical behaviors of a poly(epoxy) coating for aeronautical application12citations
  • 2018Processing and optimisation of a conductive poly(epoxy) : silver submicronic wires coating for lightning strike protection of aircraft structural composite partscitations

Places of action

Chart of shared publication
Lonjon, Antoine
3 / 32 shared
Dantras, Eric
3 / 85 shared
Bouquet, Michel
3 / 3 shared
Lacabanne, Colette
1 / 74 shared
Chart of publication period
2021
2019
2018

Co-Authors (by relevance)

  • Lonjon, Antoine
  • Dantras, Eric
  • Bouquet, Michel
  • Lacabanne, Colette
OrganizationsLocationPeople

thesis

Processing and optimisation of a conductive poly(epoxy) : silver submicronic wires coating for lightning strike protection of aircraft structural composite parts

  • Bedel, Vincent
Abstract

This work deals with the processing and the study of an extrinsic conductive polymer coating for the lightning strike protection of the aircraft carbon fibre reinforced polymer (CFRP) structural parts. The coating consist in a low viscosity bi component high performance poly(epoxy) matrix and silver submicronic wires with a high aspect ratio (AgNWs) obtained by a polyol process. The kinetic parameters, the physical structure and the molecular mobility of the matrix had been investigated as a function of the filler content. The surface and bulk conductivities had been measured as a function of filler content. It exhibits a percolation threshold below 1% in volume. The conduction mechanisms had been studied following an uncommon method of current density measurement as a function of the AgNWs content and the temperature. The critical electrical behaviour of each sample had been investigated through the current density method. It has permitted to understand the phenomenon responsible for the composite's degradation. Finally, lightning strike tests on representative configurations had been carried out. The ultrasonic inspections have highlighted the efficiency of the poly(epoxy)/AgNWs coating to avoid the structural delamination of the CFRP.

Topics
  • density
  • surface
  • polymer
  • Carbon
  • silver
  • mobility
  • viscosity
  • ultrasonic
  • current density
  • wire
  • structural composite