People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heilshorn, Sarah C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Tunable hydrogel viscoelasticity modulates human neural maturation.citations
- 2021Microrheology reveals simultaneous cell-mediated matrix stiffening and fluidization that underlie breast cancer invasion.citations
- 2018Active DNA Olympic Hydrogels Driven by Topoisomerase Activity.
- 2017Hyaluronan content governs tissue stiffness in pancreatic islet inflammation.
- 2017Dynamic Light Scattering Microrheology Reveals Multiscale Viscoelasticity of Polymer Gels and Precious Biological Materials
- 2016Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants.citations
- 2013Design of three-dimensional engineered protein hydrogels for tailored control of neurite growthcitations
- 2009Two-component protein-engineered physical hydrogels for cell encapsulationcitations
Places of action
Organizations | Location | People |
---|
article
Active DNA Olympic Hydrogels Driven by Topoisomerase Activity.
Abstract
Biological systems are equipped with a diverse repertoire of proteins that regulate DNA topology with precision that is beyond the reach of conventional polymer chemistry. Here, we harness the unique properties of topoisomerases to synthesize Olympic hydrogels formed by topologically interlinked DNA rings. Using dynamic light scattering microrheology to probe the viscoelasticity of DNA topological networks, we show that topoisomerase II enables the facile preparation of active, adenosine triphosphate-driven Olympic hydrogels that can be switched between liquid and solid states on demand. Our results provide a versatile system for engineering switchable topological materials that may be broadly leveraged to model the impact of topological constraints and active dynamics in the physics of chromosomes and other polymeric materials.