Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murphy, Faith

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Characterizing and quantifying the aging of polyethylene thin films using novel doped-films and gold nanoparticle labeling strategies toward understanding failure of cabling insulationcitations

Places of action

Chart of shared publication
Jones, Magdalene B.
1 / 1 shared
Maurer-Jones, Melissa A.
1 / 3 shared
Duckworth, Robert C.
1 / 1 shared
Zoltek, Daniel
1 / 1 shared
Okeefe, Tana
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Jones, Magdalene B.
  • Maurer-Jones, Melissa A.
  • Duckworth, Robert C.
  • Zoltek, Daniel
  • Okeefe, Tana
OrganizationsLocationPeople

document

Characterizing and quantifying the aging of polyethylene thin films using novel doped-films and gold nanoparticle labeling strategies toward understanding failure of cabling insulation

  • Jones, Magdalene B.
  • Maurer-Jones, Melissa A.
  • Duckworth, Robert C.
  • Zoltek, Daniel
  • Okeefe, Tana
  • Murphy, Faith
Abstract

<p>Under environmental driving forces, the polymer backbone of the cabling insulations undergo oxidation, scission and crosslinking reactions that ultimately lead to changes in the physical properties of the plastics. The aim of this work is to develop new methods for quantifying rates and yields of chemical changes within the relevant insultation polymers and relate these changes to changes in the electrical barrier properties of the materials. Specifically, novel methods were employed for quantifying oxidation and crystallinity within thin films relying on attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR). Oxidation was quantified using doped films as solid-state calibration standards. The percent crystallinity was also determined by normalization of amorphous and crystalline IR-stretches. To observe electrical property changes, we applied electrochemical impedance spectroscopy with solutions of either gold nanoparticles (4-6 nm diameter) or a gold salt solution. Under the applied conditions, a drop in impedance was observed and predicted to be the result of Au<sup>3+</sup> ion penetration into the aged films. Combining the ATR-FTIR measurements of oxidation and crystallinity, along with the impedance measurements, we have established a suite of strategies for evaluating polymers that will ultimately enable a predictive model for the failure of these plastics as insulators of electrical cables.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • amorphous
  • thin film
  • gold
  • aging
  • Fourier transform infrared spectroscopy
  • crystallinity
  • aging
  • electrical property