People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eckert, Richard B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Optimizing Corrosion Mitigation Costs Using Failure Analysis
- 2021Review of Current Gaps in Microbiologically Influenced Corrosion (MIC) Failure Investigations in Alberta’s Oil and Gas Sector
- 2021Using Failure Analysis to Optimize Corrosion Mitigation Costs
- 2021Time to Agree: The Efforts to Standardize Molecular Microbiological Methods (MMM) For Detection of Microorganisms in Natural and Engineered Systems
- 2021Failure Investigation of Microbiologically Influenced Corrosion in Alberta’s Oil and Gas Upstream Pipeline Operations – Trends and Gaps
- 2021Laboratory investigation of biocide treated waters to inhibit biofilm growth and reduce the potential for MIC
- 2021Microbiological Tests Used to Diagnose Microbiologically Influenced Corrosion (MIC) in Failure Investigations
- 2019Pipeline Failure Investigation: Is it MIC?
Places of action
Organizations | Location | People |
---|
document
Using Failure Analysis to Optimize Corrosion Mitigation Costs
Abstract
Failure analysis and root cause analysis (RCA) of corroded pipelines and piping system components can provide operators with valuable information to help prevent future failures while optimizing mitigation costs. If a corroded pipe sample is not handled or preserved properly because of inadequate planning, the ability to diagnose the corrosion mechanism(s) is lost. Using some basic steps for preparation and investigation, operators can determine the applicable corrosion mechanism(s) causing the corrosion and implement or adjust the measures taken to mitigate the corrosion. Collecting multiple lines of evidence about chemical and microbiological conditions, corrosion products, and operating parameters is essential. Further, with the increasing use of molecular microbiological methods (MMM), the role of microorganisms can be determined with greater certainty than has been possible in the past. Targeting mitigation measures to only the applicable corrosion mechanism(s) can support mitigation cost optimization, such as by applying only the correct chemical treatments rather than an all-encompassing "security blanket" approach.