People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liberto, Teresa
TU Wien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Discrepancies in dynamic yield stress measurements of cement pastescitations
- 2022Detecting Early-Stage Cohesion Due to Calcium Silicate Hydration with Rheology and Surface Force Apparatus ; ENEngelskEnglishDetecting Early-Stage Cohesion Due to Calcium Silicate Hydration with Rheology and Surface Force Apparatuscitations
- 2022Detecting Early-Stage Cohesion Due to Calcium Silicate Hydration with Rheology and Surface Force Apparatuscitations
- 2018Physico-chemical study of calcite colloidal suspensions : from macroscopic rheology to microscopic interaction
- 2012Riboflavin and collagen: New crosslinkin methods to tailor the stiffness of hydrogels
Places of action
Organizations | Location | People |
---|
thesis
Physico-chemical study of calcite colloidal suspensions : from macroscopic rheology to microscopic interaction
Abstract
Calcite (calcium carbonate) is an extremely widespread material that can be found naturally in rocks (i.e. marble, limestone) and is employed in many industrial fields such as paper filling, pharmaceutical, art or construction. Understanding the mechanical properties of calcite suspensions is a first step to improve the workability of the paste as well as the final properties of solid mineral materials. Macroscopic characterization of calcite suspensions via rheological measurements are linked to microscopic interactions, via DLVO analysis. Our calcite pastes are weakly attractive systems showing a typical colloidal gel behavior and characterized by an elastic shear modulus and a critical strain. The elastic domain of pure calcite suspensions is characterized for a wide range of volume concentrations. The deformation at the end of linearity exhibits a minimum versus concentration, a major prediction of colloidal gel theory, never verified so far. The interaction forces between particles are tuned by addition of simple ionic species. Rheological measurements are analyzed through DLVO calculations, obtained by chemical speciations and ζ potential measurements on dense suspensions. Addition of calcium hydroxide improves initially the workability of the paste, enhancing the reactivity when in contact with CO2. The role of interaction forces is also evaluated with flow measurements. The addition of sodium hydroxide increases strongly the attraction between particles, inducing shear bands at the macroscopic scale. This correlation is well known for emulsions but never verified so far for colloidal gels