Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brion, S. De

  • Google
  • 2
  • 16
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Magnetic and dielectric order in the kagomelike francisite Cu3Bi( SeO3) 2O2Cl31citations
  • 2002High magnetic field transport measurement of charge-ordered Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ strained thin filmscitations

Places of action

Chart of shared publication
Constable, E.
1 / 2 shared
Petit, S.
1 / 9 shared
Josse, Michaël
1 / 33 shared
Fabelo, O.
1 / 8 shared
Berger, H.
1 / 10 shared
Bourdarot, F.
1 / 11 shared
Simonet, Virginie
1 / 13 shared
Debray, J.
1 / 2 shared
Ressouche, E.
1 / 20 shared
Raymond, S.
1 / 9 shared
Prellier, Wilfrid
1 / 45 shared
Simon, Ch.
1 / 12 shared
Hervieu, M.
1 / 11 shared
Chouteau, G.
1 / 2 shared
Buzin, E. Rauwel
1 / 2 shared
Mercey, B.
1 / 11 shared
Chart of publication period
2017
2002

Co-Authors (by relevance)

  • Constable, E.
  • Petit, S.
  • Josse, Michaël
  • Fabelo, O.
  • Berger, H.
  • Bourdarot, F.
  • Simonet, Virginie
  • Debray, J.
  • Ressouche, E.
  • Raymond, S.
  • Prellier, Wilfrid
  • Simon, Ch.
  • Hervieu, M.
  • Chouteau, G.
  • Buzin, E. Rauwel
  • Mercey, B.
OrganizationsLocationPeople

article

High magnetic field transport measurement of charge-ordered Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ strained thin films

  • Prellier, Wilfrid
  • Simon, Ch.
  • Hervieu, M.
  • Chouteau, G.
  • Brion, S. De
  • Buzin, E. Rauwel
  • Mercey, B.
Abstract

We have investigated the magnetic-field-induced phase transition of charge-ordered (CO) Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ thin films, deposited onto (100)-oriented LaAlO$_3$ and (100)-oriented SrTiO$_3$ substrates using the pulsed laser deposition technique, by measuring the transport properties with magnetic fields up to 22T. The transition to a metallic state is observed on both substrates by application of a critical magnetic field ($H_C>10T$ at 60K). The value of the field required to destroy the charge-ordered insulating state, lower than the bulk compound, depends on both the substrate and the thickness of the film. The difference of the critical magnetic field between the films and the bulk material is explained by the difference of in-plane parameters at low temperature (below the CO transition). Finally, these results confirm that the robustness of the CO state, depends mainly on the stress induced by the difference in the thermal dilatations between the film and the substrate.

Topics
  • impedance spectroscopy
  • compound
  • phase
  • thin film
  • phase transition
  • pulsed laser deposition