People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lindberg, Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Oxidation Behavior of AlxHfNbTiVY0.05 Refractory High-Entropy Alloys at 700–900 °Ccitations
- 2024Influence of PbCl2 and KCl salt mixture on high temperature corrosion of alloy 625citations
- 2023The effect of Cl, Br, and F on high-temperature corrosion of heat-transfer alloyscitations
- 2023Thermodynamic Model for High-Temperature Corrosion Applications: The (NaCl + Na2CO3 + Na2SO4 + Na2S2O7 + Na2CrO4 + Na2Cr2O7 + Na2MoO4 + Na2Mo2O7 + Na2O + KCl + K2CO3 + K2SO4 + K2S2O7 + K2CrO4 + K2Cr2O7 + K2MoO4 + K2Mo2O7 + K2O) System
- 2023Critical Evaluation and Calorimetric Study of the Thermodynamic Properties of Na2CrO4, K2CrO4, Na2MoO4, K2MoO4, Na2WO4, and K2WO4citations
- 2022Impact of recently discovered sodium calcium silicate solutions on the phase diagrams of relevance for glass-ceramics in the Na2O-CaO-SiO2 systemcitations
- 2022Experimental Thermodynamic Characterization of the Chalcopyrite-Based Compounds in the Ag–In–Te System for a Potential Thermoelectric Applicationcitations
- 2022Critical evaluation of CuSO4-H2O system up to solubility limit, from eutectic point to 373.15 Kcitations
- 2021Precious Metal Distributions Between Copper Matte and Slag at High PSO2 in WEEE Reprocessingcitations
- 2021Slag Chemistry and Behavior of Nickel and Tin in Black Copper Smelting with Alumina and Magnesia-Containing Slagscitations
- 2021Superheater deposits and corrosion in temperature gradient – Laboratory studies into effects of flue gas composition, initial deposit structure, and exposure timecitations
- 2020Formation of nitride and oxide inclusions in liquid Fe-Cr-Ti-Al alloyscitations
- 2020Thermodynamic behaviour of nitrogen in the carbon saturated Fe-Mn-Si alloy during castingcitations
- 2018Experimental investigation and thermodynamic re-assessment of the ternary copper-nickel-lead systemcitations
- 2018Thermodynamic Investigation of Selected Metal Sulfates for Controlling Fouling and Slagging During Combustion
- 2018Experimental and modeling approaches to simulate temperature-gradient induced intradeposit chemical processes with implications for biomass boiler corrosion
- 2017The effect of temperature on the formation of oxide scales regarding commercial superheater steelscitations
- 2017Thermal stabilities and properties of equilibrium phases in the Pt-Te-O systemcitations
- 2017Simultaneous melt and vapor induced ash deposit aging mechanisms – Mathematical model and experimental observationscitations
- 2017The influence of flue gas temperature on lead chloride induced high temperature corrosioncitations
- 2017The Thermodynamics of Slag Forming Inorganic Phases in Biomass Combustion Processescitations
- 2016Thermochemical properties of selected ternary phases in the Ag–Bi–S systemcitations
- 2015Alkali chloride transport within superheater deposits due to temperature gradients
- 2012High temperature corrosion of boiler waterwalls induced by chlorides and bromides. Part 2:Lab-scale corrosion tests and thermodynamic equilibrium modeling of ash and gaseous speciescitations
Places of action
Organizations | Location | People |
---|
document
Thermodynamic Investigation of Selected Metal Sulfates for Controlling Fouling and Slagging During Combustion
Abstract
<p>Today, aside from the solar, wind and hydropower, solid biomass, municipal solid wastes and industrial wastes are increasingly becoming important sources of renewable energy. However, fouling, slagging and corrosion that are associated with the combustion processes of these renewable resources threaten long-term operation availability and costs of power plants. Alkali metal elements in the biomass fuel and the ash fusion behavior are the two major origins contributing to slagging during high-temperature biomass combustion. Slags accumulated on superheaters, which decrease thermal efficiency, often constitute complex combination of K-Ca-Mg-sulfates. However, thermodynamic properties of these sulfates and their combined effect with other phases, which will help to solve the fouling, slagging and high-temperature corrosion related problems in biomass combustion processes, are not well known. In this work, thermal stabilities including solubility limits of selected phases and phase mixtures in the MgSO<sub>4</sub>-K<sub>2</sub>SO<sub>4</sub>-CaSO<sub>4</sub> system are both critically reviewed and experimentally studied. The obtained results are presented and discussed.</p>