People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deleruyelle, Damien
Institut National des Sciences Appliquées de Lyon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Development of ferroelectric and antiferroelectric H1-xZrxO2-based capacitors for non-volatile memories and power supply applications
- 2024Serendipity in materials science: how a simple doping leads to novel and outstanding properties in simple dielectric HfO2 !
- 2024Stabilization of low dimensional ferroelectric HfZrO2 film
- 2023How ALD deposition analysis can help PVD deposition process!
- 2023How ALD deposition analysis can help PVD deposition process!
- 2023Engineering the nano and micro structures of sputtered HfZrO2 thin films
- 2023Engineering the nano and micro structures of sputtered HfZrO2 thin films
- 2023Interplay between Strain and Defects at the Interfaces of Ultra‐Thin Hf 0.5 Zr 0.5 O 2 ‐Based Ferroelectric Capacitorscitations
- 2023Interplay between Strain and Defects at the Interfaces of Ultra‐Thin Hf 0.5 Zr 0.5 O 2 ‐Based Ferroelectric Capacitorscitations
- 2023Interface engineering between HfZrO2 thin films and electrodes for enhanced ferroelectricity
- 2023Interface engineering between HfZrO2 thin films and electrodes for enhanced ferroelectricity
- 2022Fabrication process for sub-8 nm HfZrO2-based ferroelectric tunnel junctions with enhanced properties
- 2022Ferroelectricity Improvement in Ultra-Thin Hf0.5Zr0.5O2 Capacitors by the Insertion of a Ti Interfacial Layercitations
- 2022Ferroelectricity Improvement in Ultra-Thin Hf0.5Zr0.5O2 Capacitors by the Insertion of a Ti Interfacial Layercitations
- 2022A multiscale study of the structure, chemistry and ferroelectric properties of epitaxial sol-gel PbZr0.2Ti0.8O3 films for nanomechanical switching
- 2022A multiscale study of the structure, chemistry and ferroelectric properties of epitaxial sol-gel PbZr0.2Ti0.8O3 films for nanomechanical switching
- 2022How to play on the fabrication process of HfZrO2 ferroelectric thin film to enhance its physical properties
- 2021Electrical Characterisation of HfZrO2 Ferroelectric Tunnel Junctions for Neuromorphic Application
- 2021Bottom electrodes impact on Hf0.5Zr0.5O2 ferroelectric tunnel junctions
- 2021Bottom electrodes impact on Hf0.5Zr0.5O2 ferroelectric tunnel junctions
- 2021Effect of bottom electrodes on HZO thin film properties
- 2021Impact of a dielectric layer at TiN/HfZrO2 interface for ferroelectric tunnel junctions applications
- 2021Impact of a dielectric layer at TiN/HfZrO2 interface for ferroelectric tunnel junctions applications
- 2021Role of ultra-thin Ti and Al interfacial layers in HfZrO2 ferroelectric tunnel junctions
- 2021Role of ultra-thin Ti and Al interfacial layers in HfZrO2 ferroelectric tunnel junctions
- 2014Photo-Cross-Linked Diblock Copolymer Micelles: Quantitative Study of Photochemical Efficiency, Micelles Morphologies and their Thermal Behaviorcitations
Places of action
Organizations | Location | People |
---|
document
Bottom electrodes impact on Hf0.5Zr0.5O2 ferroelectric tunnel junctions
Abstract
After more than 40 years of continuous evolution, our computing systems are reaching their limits. Indeed, the architecture of Von-Neumann, on which our computers are based, physically dissociates the hearts of calculations from the memory. The sequential processing of information is thus confronted with a bottleneck, more commonly known as "Memory Bottleneck". A solution is to draw inspiration from the natural mathematical paradigms of the human brain, in which the data are massively parallel processed with high energy efficiency, realizing the hardware implementation of neuromorphic networks. This approach opens the possibility to bring the information storage sites (synapses) closer to the treatment sites (neurons). The discovery of memristor, theorized in 1971 by L. Chua, has led to the development of novel artificial neuromorphic concepts and devices, including ferroelectric-based ones. Ferroelectric Tunnel Junction (FTJ) type memristors based on zirconium-doped hafnium oxide, Hf_0.5 Zr_0.5 O_2 (HZO) have recently displayed synaptic learning capabilities [1]. In addition, HZO processes are already fully compatible with silicon CMOS industry with oxide layers thinner than 10 nm. In the present work, the HZO layer is realized by room temperature magnetron sputtering of a Hf_0.5 Zr_0.5 O_2 ceramic target and subsequently crystallized by rapid thermal annealing [2]. Using different bottom electrode layers (germanium, titanium nitride, platinum) grown on silicon and different substrates (n-doped silicon, n-doped germanium), we studied the effect on the stabilized crystalline phase and microstructure, band structure alignment and electrical properties of thin HZO films. Furthermore, we explored the effect of ultra-thin buffer layers between the electrodes and the HZO layer, trading on the material, the position and the thickness. We exploited X-ray photoemission spectroscopy to analyze the chemistry and the electronic state of the electrodes/HZO interface. X-ray reflectometry and grazing incidence X-ray diffraction (GIXRD) were used to probe the thickness and structural characteristics of the HZO layer, whose ferroelectricity is associated to the polar orthorhombic phase. We will discuss our results in the framework of structural, chemical and physical properties of the different electrode/ferroelectric interfaces and their effect on the electrical properties of thin HZO-based junctions.References: [1] L. Chen et al. Nanoscale, vol. 10, no. 33, pp. 15826–15833, 2018. [2] J. Bouaziz, et al., ACS Applied Electronic Materials 1 (9), 1740-1745, 2019.