People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Belnoue, Jonathan P.-H.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024An accurate forming model for capturing the nonlinear material behaviour of multilayered binder-stabilised fabrics and predicting fibre wrinklingcitations
- 2024That’s how the preform crumples: Wrinkle creation during forming of thick binder-stabilised stacks of non-crimp fabricscitations
- 2024Virtual data-driven optimisation for zero defect composites manufacturecitations
- 2024Parametric study on the effect of material properties, tool geometry, and tolerances on preform quality in wind turbine blade manufacturingcitations
- 2024Process models: A cornerstone to composites 4.0citations
- 2024But how can I optimise my high-dimensional problem with only very little data? – A composite manufacturing applicationcitations
- 2023A comprehensive modelling framework for defect prediction in automated fibre placement of composites
- 2023Thickness Control of Autoclave-Molded Composite Laminatescitations
- 2022Intelligent Composites Forming - Simulations For Faster, Higher Quality Manufacture
- 2022A MODELLING FRAMEWORK FOR THE EVOLUTION OF PREPREG TACK UNDER PROCESSING CONDITIONS
- 2022Understanding tack behaviour during prepreg-based composites’ processingcitations
- 2021On the physical relevance of power law-based equations to describe the compaction behaviour of resin infused fibrous materialscitations
- 2021Consolidation-driven wrinkling in carbon/epoxy woven fabric prepregscitations
- 2021Compaction behaviour of continuous fibre-reinforced thermoplastic composites under rapid processing conditionscitations
- 2021Modelling compaction behavior of toughened prepreg during automated fibre placement
- 2021Lab-based in-situ micro-CT observation of gaps in prepreg laminates during consolidation and curecitations
- 2021Hypo-viscoelastic modelling of in-plane shear in UD thermoset prepregscitations
- 2020Predicting consolidation-induced wrinkles and their effects on composites structural performancecitations
- 2020Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditionscitations
- 2020A rapid multi-scale design tool for the prediction of wrinkle defect formation in composite componentscitations
- 2019Modelling of the in-plane shear behavior of uncured thermoset prepreg
- 2019A numerical study of variability in the manufacturing process of thick composite partscitations
- 2019Machine-driven experimentation for solving challenging consolidation problems
- 2019Mitigating forming defects by local modification of dry preformscitations
- 2018Modelling process induced deformations in 0/90 non-crimp fabrics at the meso-scalecitations
- 2018Experimental Characterisation of In-plane Shear Behaviour of Uncured Thermoset Prepregs
- 2018Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregscitations
- 2016Predicting wrinkle formation in components manufactured from toughened UD prepreg
- 2016Understanding and prediction of fibre waviness defect generation
- 2016Cohesive/Adhesive failure interaction in ductile adhesive joints Part Icitations
- 2016An experimental investigation of the consolidation behaviour of uncured prepregs under processing conditionscitations
- 2015The compaction behaviour of un-cured prepregs
- 2012A numerical model for thick composite-metallic adhesive joints
- 2011Adaptive calibration of a nonlocal coupled damage plasticity model for aluminium alloy AA6082 T0
- 2007Modeling crack initiation and propagation in nickel base superalloys
Places of action
Organizations | Location | People |
---|
document
Modelling compaction behavior of toughened prepreg during automated fibre placement
Abstract
One of the most widely used automated manufacturing processes for composite parts is automated fibre placement (AFP). The deposition process involves the simultaneous warming, lay-up and consolidation of prepreg consisting of multitude of process parameters. Currently, AFP process parameters that ensure part conformance are derived by expensive and time-consuming trial-and-error approaches. The aim of this study is to demonstrate how physics-based finite element simulations that can predict the as manufactured geometry of a preform deposited by AFP can help reduce some of the empiricism associated with current industry practices. Here we particularly focus on the consolidation behaviour of toughened prepregs during the deposition process. An isothermal roller compaction model with thermal properties derived from an independent simplified thermo-mechanical model of the AFP head is used. Additionally, a fully characterised viscoelastic material definition is used for the prepreg tape along with a hyperelastic material for the compaction roller to accurately represent the physical parts. Various lay-up speeds, heater powers and compaction forces are simulated. To reduce the empiricism present in the manufacturing process, the viability of incorporating the numerical models into existing statistical relationships between process parameters and manufactured geometry is examined.