People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yrjas, Patrik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Analytical and applied pyrolysis of challenging biomass feedstockscitations
- 2024Analytical and applied pyrolysis of challenging biomass feedstocks:Effect of pyrolysis conditions on product yield and compositioncitations
- 2023Cold-end corrosion caused by hygroscopic ammonium chloride in thermal conversion of biomass and wastecitations
- 2021Formation of NH4Cl and its role on cold-end corrosion in CFB combustion
- 2021Superheater deposits and corrosion in temperature gradient – Laboratory studies into effects of flue gas composition, initial deposit structure, and exposure timecitations
- 2020Application of bipolar electrochemistry to accelerate dew point corrosion for screening of steel materials for power boilerscitations
- 2018Experimental and modeling approaches to simulate temperature-gradient induced intradeposit chemical processes with implications for biomass boiler corrosion
- 2017The effect of temperature on the formation of oxide scales regarding commercial superheater steelscitations
- 2017The influence of flue gas temperature on lead chloride induced high temperature corrosioncitations
- 2017Causes of low-temperature corrosion in combustion of bituminous coal
- 2014Changes in Composition of Superheater Deposits due to Temperature Gradients
- 2012High temperature corrosion of boiler waterwalls induced by chlorides and bromides. Part 2:Lab-scale corrosion tests and thermodynamic equilibrium modeling of ash and gaseous speciescitations
- 2011Performance of superheater materials in simulated oxy-fuel combustion conditions at 650°C
Places of action
Organizations | Location | People |
---|
document
Changes in Composition of Superheater Deposits due to Temperature Gradients
Abstract
Ash deposits on furnace walls and heat exchanger surfaces can show large internal variation in the chemical composition and physical properties. Part of the variations are due to the heterogeneous nature of the fuel but an additional factor may be the steep temperature gradient within the deposit giving rise to physicochemical changes in the deposit over time.A novel laboratory method has been developed to study the chemical and physical behavior of ash deposits in a temperature gradient. The setup involves an air-cooled probe that is inserted into a tube furnace, where the probe temperature simulates superheater temperatures and the furnace temperature simulates the flue gas temperature close to the superheaters. Synthetic deposits are applied on probe rings made from superheater materials. Advanced electron microscopy is used to study the cross-section of the deposits and the corrosion layers in the superheater materials.Experiments with synthetic alkali salt mixtures similar to biomass boiler deposits show that alkali chlorides evaporate from hotter particles in the deposit and condense on colder particles closer to the cooled metal surface or even condense on the metal surface. Formation of a partially or completely molten layer in the outer hotter region closer to the hot gas is also observed in the experiments.The effect of time is shown to be significant for the enrichment of chlorides as longer experiment time leads to higher amounts of vaporization, transportation and condensation within the deposits. These effects are quantitatively verified using Computational Fluid Dynamics modeling. The transportation of alkali chloride vapors becomes negligible if the deposit and metal temperature is cold enough. An enrichment of alkali chlorides towards the cooled metal surface occurs and can increase chlorine-induced corrosion of superheaters as the deposits mature over time.Ash deposits on furnace walls and heat exchanger surfaces can show large internal variation in the chemical composition and physical properties. Part of the variations are due to the heterogeneous nature of the fuel but an additional factor may be the steep temperature gradient within the deposit giving rise to physicochemical changes in the deposit over time.A novel laboratory method has been developed to study the chemical and physical behavior of ash deposits in a temperature gradient. The setup involves an air-cooled probe that is inserted into a tube furnace, where the probe temperature simulates superheater temperatures and the furnace temperature simulates the flue gas temperature close to the superheaters. Synthetic deposits are applied on probe rings made from superheater materials. Advanced electron microscopy is used to study the cross-section of the deposits and the corrosion layers in the superheater materials.Experiments with synthetic alkali salt mixtures similar to biomass boiler deposits show that alkali chlorides evaporate from hotter particles in the deposit and condense on colder particles closer to the cooled metal surface or even condense on the metal surface. Formation of a partially or completely molten layer in the outer hotter region closer to the hot gas is also observed in the experiments.The effect of time is shown to be significant for the enrichment of chlorides as longer experiment time leads to higher amounts of vaporization, transportation and condensation within the deposits. These effects are quantitatively verified using Computational Fluid Dynamics modeling. The transportation of alkali chloride vapors becomes negligible if the deposit and metal temperature is cold enough. An enrichment of alkali chlorides towards the cooled metal surface occurs and can increase chlorine-induced corrosion of superheaters as the deposits mature over time.