People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engblom, Markus
Åbo Akademi University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Understanding the crystallization behavior of bioactive glass S53P4 powder compacts under various heating conditionscitations
- 2021Superheater deposits and corrosion in temperature gradient – Laboratory studies into effects of flue gas composition, initial deposit structure, and exposure timecitations
- 2018Experimental and modeling approaches to simulate temperature-gradient induced intradeposit chemical processes with implications for biomass boiler corrosion
- 2017Simultaneous melt and vapor induced ash deposit aging mechanisms – Mathematical model and experimental observationscitations
- 2017The influence of flue gas temperature on lead chloride induced high temperature corrosioncitations
- 2015Alkali chloride transport within superheater deposits due to temperature gradients
- 2014Changes in Composition of Superheater Deposits due to Temperature Gradients
Places of action
Organizations | Location | People |
---|
document
Changes in Composition of Superheater Deposits due to Temperature Gradients
Abstract
Ash deposits on furnace walls and heat exchanger surfaces can show large internal variation in the chemical composition and physical properties. Part of the variations are due to the heterogeneous nature of the fuel but an additional factor may be the steep temperature gradient within the deposit giving rise to physicochemical changes in the deposit over time.A novel laboratory method has been developed to study the chemical and physical behavior of ash deposits in a temperature gradient. The setup involves an air-cooled probe that is inserted into a tube furnace, where the probe temperature simulates superheater temperatures and the furnace temperature simulates the flue gas temperature close to the superheaters. Synthetic deposits are applied on probe rings made from superheater materials. Advanced electron microscopy is used to study the cross-section of the deposits and the corrosion layers in the superheater materials.Experiments with synthetic alkali salt mixtures similar to biomass boiler deposits show that alkali chlorides evaporate from hotter particles in the deposit and condense on colder particles closer to the cooled metal surface or even condense on the metal surface. Formation of a partially or completely molten layer in the outer hotter region closer to the hot gas is also observed in the experiments.The effect of time is shown to be significant for the enrichment of chlorides as longer experiment time leads to higher amounts of vaporization, transportation and condensation within the deposits. These effects are quantitatively verified using Computational Fluid Dynamics modeling. The transportation of alkali chloride vapors becomes negligible if the deposit and metal temperature is cold enough. An enrichment of alkali chlorides towards the cooled metal surface occurs and can increase chlorine-induced corrosion of superheaters as the deposits mature over time.Ash deposits on furnace walls and heat exchanger surfaces can show large internal variation in the chemical composition and physical properties. Part of the variations are due to the heterogeneous nature of the fuel but an additional factor may be the steep temperature gradient within the deposit giving rise to physicochemical changes in the deposit over time.A novel laboratory method has been developed to study the chemical and physical behavior of ash deposits in a temperature gradient. The setup involves an air-cooled probe that is inserted into a tube furnace, where the probe temperature simulates superheater temperatures and the furnace temperature simulates the flue gas temperature close to the superheaters. Synthetic deposits are applied on probe rings made from superheater materials. Advanced electron microscopy is used to study the cross-section of the deposits and the corrosion layers in the superheater materials.Experiments with synthetic alkali salt mixtures similar to biomass boiler deposits show that alkali chlorides evaporate from hotter particles in the deposit and condense on colder particles closer to the cooled metal surface or even condense on the metal surface. Formation of a partially or completely molten layer in the outer hotter region closer to the hot gas is also observed in the experiments.The effect of time is shown to be significant for the enrichment of chlorides as longer experiment time leads to higher amounts of vaporization, transportation and condensation within the deposits. These effects are quantitatively verified using Computational Fluid Dynamics modeling. The transportation of alkali chloride vapors becomes negligible if the deposit and metal temperature is cold enough. An enrichment of alkali chlorides towards the cooled metal surface occurs and can increase chlorine-induced corrosion of superheaters as the deposits mature over time.