People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nadaud, Kevin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Subcoercive-field dielectric response of 0.5 (Ba 0.7 Ca 0.3 TiO 3 ) -0.5 (BaZr 0.2 Ti 0.8 O 3 ) thin film: peculiar third harmonic signature of phase transitions and residual ferroelectricitycitations
- 2024Active and passive electronic interfaces adapted to a capacitive micromachined ultrasonic transducer (CMUT) used in acoustic energy transfercitations
- 2024BCTZ lead free thin films with Ce doping gradient: enhanced piezoelectricity and relaxor behaviour
- 2024Enhanced piezoelectricity properties and relaxor behaviour in (Ce, Y) co-doped BCTZ thin films libraries
- 2023Subcoercive-field dielectric response of 0.5 (Ba 0.7 Ca 0.3 TiO 3 ) -0.5 (BaZr 0.2 Ti 0.8 O 3 ) thin film: peculiar third harmonic signature of phase transitions and residual ferroelectricity
- 2023Active and passive electronic interfaces adapted to a capacitive micromachined ultrasonic transducer (CMUT) used in acoustic energy transfer
- 2022Real‐time capturing of microscale events controlling the sintering of lead‐free piezoelectric potassium‐sodium niobatecitations
- 2022Multifunctional energy storage and piezoelectric properties of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thick films on stainless-steel substratescitations
- 2022Effect of thermal annealing on dielectric and ferroelectric properties of aerosol-deposited 0.65Pb(Mg1/3Nb2/3)O3-0.35 PbTiO3 thick filmscitations
- 2022Low-Temperature Hydrothermal Growth of ZnO Nanowires on AZO Substrates for FACsPb(IBr)3 Perovskite Solar Cellscitations
- 2022Multifunctional energy storage and piezoelectric properties of 0.65Pb(Mg 1/3 Nb 2/3 )O 3 –0.35PbTiO 3 thick films on stainless-steel substratescitations
- 2022Influence of bottom electrode and seed layer on the growth of ZnO nanowires for vibrational energy harvesting
- 2020Tetragonal tungsten bronze phase thin films in the K–Na–Nb–O system: Pulsed laser deposition, structural and dielectric characterizationscitations
- 2019Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowirescitations
- 2019Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowirescitations
- 2019Challenges of low-temperature synthesized ZnO nanostructures and their integration into nano-systemscitations
- 2019Challenges of low-temperature synthesized ZnO nanowires and their integration into nanogenerators
- 2019Annealing and Thickness Effects of ZnO Seed Layer on Improving Alignment of ZnO NWs for Piezoelectric Nanogenerator Application
- 2018Organic/Inorganic Hybrid Stretchable Piezoelectric Nanogenerators for Self-Powered Wearable Electronicscitations
- 2018Organic/Inorganic Hybrid Stretchable Piezoelectric Nanogenerators for Self‐Powered Wearable Electronicscitations
- 2018Challenges of low-temperature synthesized ZnO nanostructures and their integration into nano-systemscitations
- 2017Effect of the incident power on permittivity, losses and tunability of BaSrTiO<sub>3</sub> thin films in the microwave frequency rangecitations
- 2017Effect of the incident power on permittivity, losses and tunability of BaSrTiO 3 thin films in the microwave frequency rangecitations
- 2017Zinc oxide nanowire-parylene nanocomposite based stretchable piezoelectric nanogenerators for self-powered wearable electronicscitations
- 2016Domain wall motions in BST ferroelectric thin films in the microwave frequency rangecitations
- 2016Description of domain wall motions by the hyperbolic law
- 2016Decomposition of the different contributions to permittivity, losses, and tunability in BaSrTiO3 thin films using the hyperbolic lawcitations
- 2015Effect of Manganese Doping of BaSrTiO 3 on Diffusion and Domain Wall Pinningcitations
- 2015Temperature stable BaSrTiO3 thin films suitable for microwave applicationscitations
- 2013A new method of dielectric characterization in the microwave range for high-k ferroelectric thin filmscitations
Places of action
Organizations | Location | People |
---|
document
Description of domain wall motions by the hyperbolic law
Abstract
In ferroelectric materials, domain walls interact with lattice defects and several types of domain walls displacements can be observed. When a domain wall is trapped at a pinning point, it can “jump” to another pinning center only if the driving electric field is sufficiently high. On the contrary, if the field is too weak, the domain wall only vibrates around its equilibrium position. Thus, both situations contribute to the value of the permittivity which can be described by the hyperbolic law. This law is based on reversible and irreversible domain wall motions and allows us to dissociate the domain wall and lattice contributions from the dielectric measurements.