People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Çakmak, Gülce
University of Bern
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Surface roughness, optical properties, and microhardness of additively and subtractively manufactured CAD‐CAM materials after brushing and coffee thermal cyclingcitations
- 2023Influence of polishing technique and coffee thermal cycling on the surface roughness and color stability of additively and subtractively manufactured resins used for definitive restorationscitations
- 2023Evaluation of Dimensional Stability and Occlusal Wear of Additively and Subtractively Manufactured Resin-Based Crowns after Thermomechanical Agingcitations
- 2023Flexural strength, surface roughness, and biofilm formation of ceramic‐reinforced PEEK: An in vitro comparative studycitations
- 2023Flexural Strength and Vickers Microhardness of Graphene-Doped SnO2 Thin-Film-Coated Polymethylmethacrylate after Thermocyclingcitations
- 2020The effect of scanner type and scan body position on the accuracy of complete‐arch digital implant scanscitations
- 2019Effect of Surface Finishing Methods and Aging on Surface Roughness and Optical Properties of Zirconia-Reinforced Lithium Silicate Glass-Ceramiccitations
- 2019Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymerscitations
- 2018Evaluation of flexural strength and surface properties of prepolymerized CAD/CAM PMMA-based polymers used for digital 3D complete dentures.
- 2017Repair bond strengths of non-aged and aged resin nanoceramics.citations
Places of action
Organizations | Location | People |
---|
article
Evaluation of flexural strength and surface properties of prepolymerized CAD/CAM PMMA-based polymers used for digital 3D complete dentures.
Abstract
<h4>Purpose</h4>The objectives of this in vitro study were to evaluate the flexural strength (FS), surface roughness (Ra), and hydrophobicity of polymethylmethacrylate (PMMA)-based computer-aided design/computer-aided manufacturing (CAD/CAM) polymers and to compare the properties of different CAD/CAM PMMA-based polymers with conventional heat-polymerized PMMA following thermal cycling.<h4>Materials and methods</h4>Twenty rectangular-shaped specimens (64 × 10 × 3.3 mm) were fabricated from three CAD/CAM PMMA-based polymers (M-PM Disc [M], AvaDent Puck Disc [A], and Pink CAD/CAM Disc Polident [P], and one conventional heat-polymerized PMMA (Promolux [C]), according to ISO 20795-1:2013 standards. The specimens were divided into two subgroups (n = 10), a control and a thermocycled group. The specimens in the thermocycled group were subjected to 5000 thermal cycling procedures (5 to 55°C; 30 s dwell times). The Ra value was measured using a profilometer. Contact angle (CA) was assessed using the sessile drop method to evaluate surface hydrophobicity. In addition, the FS of the specimens was tested in a universal testing machine at a crosshead speed of 1.0 mm/min. Surface texture of the materials was assessed using scanning electron microscope (SEM). The data were analyzed using two-way analysis of variance (ANOVA), followed by Tukey's HSD post-hoc test (α < 0.05).<h4>Results</h4>CAD/CAM PMMA-based polymers showed significantly higher FS than conventional heat-polymerized PMMA for each group (P < 0.001). CAD/CAM PMMA-based polymer [P] showed the highest FS, whereas conventional PMMA [C] showed the lowest FS before and after thermal cycling (P < 0.001). There were no significant differences among the Ra values of the tested denture base polymers in the control group (P > 0.05). In the thermocycled group, the lowest Ra value was observed for CAD/CAM PMMA-based polymer [M] (P < 0.001), whereas CAD/CAM PMMA-based polymers [A] and [P], and conventional PMMA [C] had similar Ra values (P > 0.05). Conventional PMMA [C] had a significantly lower CA and consequently lower hydrophobicity compared to the CAD/CAM polymers in the control group (P < 0.001). In the thermocycled group, CAD/CAM PMMA-based polymer [A] and conventional PMMA [C] had significantly higher CA, and consequently higher hydrophobicity when compared to CAD/CAM polymers [M] and [P] (P < 0.001). However, no significant differences were found among the other materials (P > 0.05).<h4>Conclusions</h4>The FS and hydrophobicity of the CAD/CAM PMMA-based polymers were higher than the conventional heat-polymerized PMMA, whereas the CAD/CAM PMMA-based polymers had similar Ra values to the conventional PMMA. Thermocycling had a significant effect on FS and hydrophobicity except for the Ra of denture base materials.