People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reijonen, Joni
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2022High-coercivity NdFeB Printed Magnets With Laser Powder Bed Fusion Method
- 2022Single-Track Laser Scanning as a Method for Evaluating Printability: The Effect of Substrate Heat Treatment on Melt Pool Geometry and Cracking in Medium Carbon Tool Steelcitations
- 2022Laser Powder Bed Fusion Of High Carbon Tool Steels
- 2022Experimental and Calphad Methods for Evaluating Residual Stresses and Solid-State Shrinkage after Solidificationcitations
- 2022Opportunities Of Physics-Based Multi-Scale Modeling Tools In Assessing Intra-Grain Heterogeneities, Polycrystal Properties And Residual Stresses Of AM Metals
- 2021Micromechanical modeling approach to single track deformation, phase transformation and residual stress evolution during selective laser melting using crystal plasticitycitations
- 2021Cross-testing laser powder bed fusion production machines and powders: Variability in mechanical properties of heat-treated 316L stainless steelcitations
- 2021Cross-testing laser powder bed fusion production machines and powderscitations
- 2021Cross-testing laser powder bed fusion production machines and powders:Variability in mechanical properties of heat-treated 316L stainless steelcitations
- 2021Method for embedding components during additive manufacturing of metal parts
- 2020On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2017Feasibility of selective laser melting process in manufacturing of digital spare parts
- 2017Circular Economy Concept In Additive Manufacturing
Places of action
Organizations | Location | People |
---|
patent
Method for embedding components during additive manufacturing of metal parts
Abstract
<p>Method for embedding components during additive manufacturing of metal parts, wherein the product (1) is formed with laser powder bed fusion process, at least one space (3) for a component (4) is formed inside the metal material of the product during the additive manufacturing process, the additive manufacturing process is interrupted before the said space is closed, the component is inserted in the said open space, and the additive manufacturing process for manufacturing the product is continued, wherein at least one cooling channel (5), for cooling the area of the product (1) wherein the said space (3) is located, is formed inside the product to be manufactured before the additive manufacturing process is interrupted for insertion of the said component (4), and cooling fluid in conveyed in the at least one cooling channel.<br/></p><p class="MsoNormal"><b>Patent family as of27.12.2021<br/></b></p>FI129052 B 20210615 FI20200005656 20200623 FI20205656 A 20210615 FI20200005656 20200623<p class="MsoNormal"><b>Link to current patent family on right </b></p>