Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Loguercio, Ad

  • Google
  • 2
  • 13
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Effect of Radiant Exposure on the Physical and Mechanical Properties of 10 Flowable and High-viscosity Bulk-fill Resin Composites6citations
  • 2016Laboratory performance of universal adhesive systems for luting CAD/CAM restorative materialscitations

Places of action

Chart of shared publication
Braga, Ssl
1 / 1 shared
Ribeiro, Mth
1 / 2 shared
Deus, Ra De
1 / 1 shared
Oliveira, Lrs
1 / 2 shared
Soares, Cj
1 / 4 shared
Price, Rb
1 / 1 shared
Núñez, A.
1 / 1 shared
Malaquias, P.
1 / 1 shared
Hass, V.
1 / 1 shared
Cardenas, Am
1 / 1 shared
Gutierrez, Mf
1 / 1 shared
Siqueira, F.
1 / 1 shared
Reis, A.
1 / 20 shared
Chart of publication period
2024
2016

Co-Authors (by relevance)

  • Braga, Ssl
  • Ribeiro, Mth
  • Deus, Ra De
  • Oliveira, Lrs
  • Soares, Cj
  • Price, Rb
  • Núñez, A.
  • Malaquias, P.
  • Hass, V.
  • Cardenas, Am
  • Gutierrez, Mf
  • Siqueira, F.
  • Reis, A.
OrganizationsLocationPeople

article

Laboratory performance of universal adhesive systems for luting CAD/CAM restorative materials

  • Malaquias, P.
  • Hass, V.
  • Cardenas, Am
  • Gutierrez, Mf
  • Siqueira, F.
  • Reis, A.
  • Loguercio, Ad
Abstract

PURPOSE: To evaluate the microshear bond strength (μSBS) of several universal adhesive systems applied on five different indirect restorative materials. MATERIALS AND METHODS: Five CAD/CAM materials were selected: 1) indirect resin composite (LAV); 2) feldspathic glass ceramic (VTR); 3) leucite-reinforced glass-ceramic (EMP); 4) lithium disilicate ceramic (EMX); 5) yttrium-stabilized zirconium dioxide (CZI). For each material, 15 blocks were cut into 4 rectangular sections (6 × 6 × 6 mm) (n = 60 per group), and processed as recommended by the respective manufacturer. For each indirect material, the following adhesive systems were applied according to the respective manufacturer's instructions: 1) AdheSE Universal [ADU]; 2) All-Bond Universal (ABU); 3) Ambar Universal (AMB); 4) Clearfil Universal (CFU); 5) Futurabond U (FBU); 6) One Coat 7 Universal (OCU); 7) Peak Universal Bond (PUB); 8) Prime&Bond Elect (PBE); 9) Scotchbond Universal Adhesive (SBU); 10) Xeno Select (XEN, negative control). After the application of the adhesive system, cylinder-shaped transparent matrices were filled with a dual-curing resin cement (NX3) and light cured. Specimens were stored in water (37°C for 24 h) and tested in shear mode at 1.0 mm/min (mSBS). The failure pattern and μSBS were statistically evaluated (a = 0.05). RESULTS: LAV, VTR, and EMP showed a greater number of cohesive fractures than EMX and CZI (p < 0.0001). PUB was the only adhesive for which the mean μSBS reached the highest ranking of statistical significance for all five substrates. When each adhesive was compared across the five substrates, 8 out of 10 (ADU, ABU, AMB, CFU, OCU, PUB, PBE, and SBU) reached the statistically highest mean μSBS when applied on CZI. CONCLUSION: The specific chemical composition of universal adhesives was not the decisive factor in the bond strength values measured for different CAD/CAM indirect materials. There was a wide variability in mean μSBS when different universal adhesives were applied to the several CAD/CAM indirect materials. Most universal adhesives bonded well to air-abraded zirconia.

Topics
  • glass
  • glass
  • zirconium
  • strength
  • composite
  • cement
  • chemical composition
  • Lithium
  • Yttrium
  • resin
  • curing
  • collision-induced dissociation
  • zirconium dioxide