Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Figge, S.

  • Google
  • 8
  • 44
  • 236

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2013Phase diagram and critical behavior of the random ferromagnet Ga1-xMnxN58citations
  • 2012Ga1-xMnxN epitaxial films with high magnetization52citations
  • 2007Defect structure of a-plane GaN grown by hydride and metal-organic vapor phase epitaxy on r-plane sapphire8citations
  • 2007Defect distribution in a-plane GaN on Al2O335citations
  • 2006Anti-diffusion barriers for gold-based metallizations to p-GaNcitations
  • 2006High-quality bulk a-plane GaN sliced from boules in comparison to heteroepitaxially grown thick films on r-plane sapphire78citations
  • 2006Surface segregation of Si and Mg dopants in MOVPE grown GaN films revealed by X-ray photoemission spectro-microscopy5citations
  • 2005Microstructure of highly p-type doped GaN sub-contact layers for low-resistivity contactscitations

Places of action

Chart of shared publication
Majewski, J. A.
1 / 14 shared
Simserides, C.
1 / 5 shared
Hommel, D.
8 / 16 shared
Li, Tian
2 / 18 shared
Trohidou, K. N.
1 / 10 shared
Dietl, Tomasz
2 / 262 shared
Jakiela, R.
2 / 14 shared
Bonanni, A.
2 / 38 shared
Stefanowicz, S.
1 / 2 shared
Sawicki, M.
2 / 67 shared
Kruse, C.
2 / 4 shared
Stefanowicz, W.
2 / 14 shared
Kunert, G.
2 / 2 shared
Dobkowska, S.
1 / 2 shared
Grenzer, J.
1 / 12 shared
Reuther, H.
1 / 8 shared
Von Borany, J.
1 / 4 shared
Rosenauer, A.
1 / 15 shared
Monemar, B.
3 / 4 shared
Kroger, Roland
4 / 20 shared
Paskova, T.
3 / 17 shared
Kersting, R.
1 / 3 shared
Tuomisto, Filip
1 / 44 shared
Kroeger, R.
2 / 3 shared
Piotrowska, A.
1 / 22 shared
Turos, A.
1 / 5 shared
Guziewicz, M.
1 / 5 shared
Stonert, A.
1 / 5 shared
Kaminska, E.
1 / 19 shared
Dynowska, E.
1 / 7 shared
Tutor, M.
1 / 1 shared
Hanser, A.
1 / 1 shared
Williams, Nikki
1 / 3 shared
Darakchieva, V.
1 / 6 shared
Gregoratti, L.
1 / 13 shared
Gangopadhyay, S.
1 / 5 shared
Schmidt, Th
1 / 2 shared
Flege, J. I.
1 / 3 shared
Siebert, M.
1 / 3 shared
Pretorius, A.
1 / 2 shared
Barinov, A.
1 / 6 shared
Falta, J.
1 / 4 shared
Bottcher, T.
1 / 1 shared
Dennemarck, J.
1 / 1 shared
Chart of publication period
2013
2012
2007
2006
2005

Co-Authors (by relevance)

  • Majewski, J. A.
  • Simserides, C.
  • Hommel, D.
  • Li, Tian
  • Trohidou, K. N.
  • Dietl, Tomasz
  • Jakiela, R.
  • Bonanni, A.
  • Stefanowicz, S.
  • Sawicki, M.
  • Kruse, C.
  • Stefanowicz, W.
  • Kunert, G.
  • Dobkowska, S.
  • Grenzer, J.
  • Reuther, H.
  • Von Borany, J.
  • Rosenauer, A.
  • Monemar, B.
  • Kroger, Roland
  • Paskova, T.
  • Kersting, R.
  • Tuomisto, Filip
  • Kroeger, R.
  • Piotrowska, A.
  • Turos, A.
  • Guziewicz, M.
  • Stonert, A.
  • Kaminska, E.
  • Dynowska, E.
  • Tutor, M.
  • Hanser, A.
  • Williams, Nikki
  • Darakchieva, V.
  • Gregoratti, L.
  • Gangopadhyay, S.
  • Schmidt, Th
  • Flege, J. I.
  • Siebert, M.
  • Pretorius, A.
  • Barinov, A.
  • Falta, J.
  • Bottcher, T.
  • Dennemarck, J.
OrganizationsLocationPeople

booksection

Microstructure of highly p-type doped GaN sub-contact layers for low-resistivity contacts

  • Bottcher, T.
  • Hommel, D.
  • Figge, S.
  • Dennemarck, J.
  • Kroger, Roland
Abstract

The effect of a highly Mg doped subcontact layer on top of GaN grown by metal organic vapor phase epitaxy and its interface to a Pd/Au contact layer was investigated by means of transmission electron microscopy and electrical characterization techniques. Use was made of prior investigations of the Mg doping characteristics, which showed the existence of a segregation related defect free layer even for doping levels as high as 5x10(-19) cm(-3), which thickness depends on the Mg to Ga molar precursor flow ratio. For a given subcontact layer thickness of 15 nm a critical precursor molar flow ratio of 0.035 resulted in a smooth surface showing an interfacial layer indicating a Pd/Ga alloying. This layer resulted in a contact resistivity as low as 2x10(-5) Omega cm(2). For a flow ratio of 0.070 the surface was found to be rough due to defect formation resulting in a contact resistivity as high as 10(-3) Omega cm(2) similar to the value obtained without subcontact layer. Moreover, the metallization layer showed in all cases a texture of the 111 lattice planes with respect to the 0002 planes of the GaN.

Topics
  • microstructure
  • surface
  • resistivity
  • phase
  • transmission electron microscopy
  • texture
  • defect