People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pedersen, Allan Schrøder
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2004Dehydrogenation kinetics for pure and nickel-doped magnesium hydride investigated by in-situ, time-resolved powder diffraction (poster)
- 2000Bulk amorphous alloys: Preparation and properties of (Mg 0 . 9 8 Al 0 . 0 2 ) x (Cu 0 . 7 5 Y 0 . 2 5 ) 1 0 0 - xcitations
- 2000Numerical modelling of the spray forming process: The effect of process parameters on the deposited material
- 2000Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys
- 2000Bulk amorphous alloys: Preparation and properties of (Mg0.98Al0.02)x(Cu0.75Y0.25)100-xcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Dehydrogenation kinetics for pure and nickel-doped magnesium hydride investigated by in-situ, time-resolved powder diffraction (poster)
Abstract
The dehydrogenation kinetics of pure and nickel-doped magnesium hydride was investigated by in-situ, time-resolved X-ray powder diffraction. A special reaction cell allowed the study of gas/solid reactions and analysis of the exhaust gas by massspectroscopy. X-ray data (0 <2è <120°) was collected under isothermal conditions with a time resolution of 45 s. Three phases were identified, Mg,MgH2 and MgO, and the phase fractions were extracted for each phase. Dehydrogenation curves wereconstructed and analyzed by the Johnson-Mehl-Avrami formalism in order to derive rateconstants at different temperatures. Apparent activation energies were calculated from Arrhenius plots revealing values of ca. 300 and 250 kJ/mol for the dehydrogenationof pure and nickel-doped magnesium hydride, respectively, in accord with EA= 270 kJ/mol measured by thermal desorption spectroscopy for these non-activated materials. Furthermore, the difference in apparent activation energy of ca. 50 kJ/mol compares totheoretical calculations for the atomisation of H2 molecules, which might be the rate-determining step in the dehydrogenation process.