Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Waitz, Thomas

  • Google
  • 9
  • 31
  • 431

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2021In Situ Synchrotron X‐Ray Diffraction during High‐Pressure Torsion Deformation of Ni and NiTi13citations
  • 2016Experimental and theoretical evidence of displacive martensite in an intermetallic Mo-containing $gamma$-TiAl based alloy65citations
  • 2016Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformation77citations
  • 2013Thermal stability and phase transformations of martensitic Ti-Nb alloys138citations
  • 2007Formation and structures of bulk nanocrystalline intermetallic alloys studied by transmission electron microscopy42citations
  • 2005Martensitic phase transformations of bulk nanocrystalline NiTi alloyscitations
  • 2004HRTEM analysis of nanostructured alloys processed by severe plastic deformation62citations
  • 2004TEM of nanostructured metals and alloys17citations
  • 2003TEM investigation of the structure of deformation-induced antiphase boundary faults in Ni3Al17citations

Places of action

Chart of shared publication
Schuster, Roman
1 / 2 shared
Schell, Norbert
1 / 180 shared
Von Baeckmann, Cornelia
1 / 1 shared
Spieckermann, Florian
1 / 31 shared
Schafler, Erhard
1 / 15 shared
Kerber, Michael Bernhard
1 / 1 shared
Fischer, Torben
1 / 8 shared
Mayer, Svea
1 / 56 shared
Clemens, Helmut
1 / 120 shared
Fischer, Franz Dieter
2 / 19 shared
Antretter, Thomas
2 / 37 shared
Petersmann, Manuel
1 / 7 shared
Ozaltin, Kadir
1 / 11 shared
Pukenas, A.
1 / 4 shared
Horky, J.
1 / 3 shared
Skrotzki, Werner
2 / 27 shared
Panigrahi, A.
1 / 9 shared
Zehetbauer, M.
1 / 18 shared
Sulkowski, B.
1 / 1 shared
Chromiński, Witold
1 / 19 shared
Lewandowska, Małgorzata
1 / 89 shared
Gebert, Annett
1 / 43 shared
Eckert, Jürgen
1 / 1035 shared
Zehetbauer, Michael
1 / 8 shared
Panigrahi, Ajit
1 / 4 shared
Calin, Mariana
1 / 18 shared
Bönisch, Matthias
1 / 9 shared
Rentenberger, Christian
4 / 46 shared
Karnthaler, Hans-Peter
4 / 21 shared
Karnthaler, H. Peter
1 / 3 shared
Mingler, Bernhard
1 / 4 shared
Chart of publication period
2021
2016
2013
2007
2005
2004
2003

Co-Authors (by relevance)

  • Schuster, Roman
  • Schell, Norbert
  • Von Baeckmann, Cornelia
  • Spieckermann, Florian
  • Schafler, Erhard
  • Kerber, Michael Bernhard
  • Fischer, Torben
  • Mayer, Svea
  • Clemens, Helmut
  • Fischer, Franz Dieter
  • Antretter, Thomas
  • Petersmann, Manuel
  • Ozaltin, Kadir
  • Pukenas, A.
  • Horky, J.
  • Skrotzki, Werner
  • Panigrahi, A.
  • Zehetbauer, M.
  • Sulkowski, B.
  • Chromiński, Witold
  • Lewandowska, Małgorzata
  • Gebert, Annett
  • Eckert, Jürgen
  • Zehetbauer, Michael
  • Panigrahi, Ajit
  • Calin, Mariana
  • Bönisch, Matthias
  • Rentenberger, Christian
  • Karnthaler, Hans-Peter
  • Karnthaler, H. Peter
  • Mingler, Bernhard
OrganizationsLocationPeople

document

Martensitic phase transformations of bulk nanocrystalline NiTi alloys

  • Waitz, Thomas
  • Karnthaler, H. Peter
  • Fischer, Franz Dieter
  • Antretter, Thomas
Abstract

<p>Bulk nanocrystalline NiTi alloys were made by methods of severe plastic deformation. Solid state amorphization of NiTi by high pressure torsion was followed by polymorphous devitrification to obtain stress free nanograins of the B2 high temperature phase. Upon cooling, the transformation from B2 austenite to B19' martensite is suppressed by a transformation barrier that increases with decreasing size of the nanograins. Grains with a size of less than about 50 nm do not transform to martensite even at large undercooling. The analysis of the atomic structures by high-resolution transmission electron microscopy reveals the result that the martensitic transformation is taking place by nanoscale twinning. Low-energy twin boundaries facilitate arrays of compound twins on atomic level to overcome the strain energy barrier. Nanograins were modeled as spherical inclusions containing twinned martensite to calculate the transformation energy and to find a critical grain size below which the martensitic transformation becomes unlikely. An energy minimization criterion enables to predict the morphology of the transformed grain. In grains larger than about 100 nm self-accommodation occurs by a unique "herring-bone" microstructure yielding energy minimization and strain compatibility at invariant interfaces. Calculations using the geometrically nonlinear theory of the martensitic transformation agree with the observed geometry of the "herring-bone" microstructure.</p>

Topics
  • impedance spectroscopy
  • morphology
  • compound
  • polymer
  • grain
  • inclusion
  • grain size
  • phase
  • theory
  • laser emission spectroscopy
  • transmission electron microscopy
  • twinned