People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fischer, Franz Dieter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2022Strain and interface energy of ellipsoidal inclusions subjected to volumetric eigenstrains: shape factorscitations
- 2021An atomistic view on Oxygen, antisites and vacancies in the γ-TiAl phasecitations
- 2020Cycled hydrogen permeation through Armco iron – A joint experimental and modeling approachcitations
- 2020Damage tolerance of lamellar bonecitations
- 2019The creep behavior of a fully lamellar γ-TiAl based alloycitations
- 2019Unifcation of the non-linear geometric transformation theory of martensite and crystal plasticity - Application to dislocated lath martensite in steelscitations
- 2018The effect of residual stresses and strain reversal on the fracture toughness of TiAl alloyscitations
- 2016Experimental and theoretical evidence of displacive martensite in an intermetallic Mo-containing $gamma$-TiAl based alloycitations
- 2011Bioinspired Design Criteria for Damage-Resistant Materials with Periodically Varying Microstructurecitations
- 2010A kinetic model of the transformation of a micropatterned amorphous precursor into a porous single crystalcitations
- 2005Martensitic phase transformations of bulk nanocrystalline NiTi alloys
- 2003Effect of back stress evolution due to martensitic transformation on iso-volume fraction lines in a Cr-Ni-Mo-Al-Ti maraging steelcitations
- 2002Back stress evolution and iso-volume fraction lines in a Cr-Ni-Mo-Al-Ti maraging steel in the process of martensitic transformationcitations
- 2002Theory, experiments and numerical modelling of phase transformations with emphasis on TRIP
- 2001Upsetting of cylinders: A comparison of two different damage indicatorscitations
- 2001Mechanical properties of a Cr-Ni-Mo-Al-Ti maraging steel in the process of martensitic transformationcitations
- 2000New view on transformation induced plasticity (TRIP)citations
- 2000The role of backstress in phase transforming steels
- 2000Deformation behavior of elastic-plastic materials containing instantly transforming inclusions
Places of action
Organizations | Location | People |
---|
article
Theory, experiments and numerical modelling of phase transformations with emphasis on TRIP
Abstract
<p>This paper presents an overview of the co-operative efforts aiming at the correct characterisation of the thermo-mechanical behaviour of materials during the process of a phase change. In the first section the physical conditions for the onset of transformation processes, either diffusive or massive or displacive, expressed in terms of the chemical driving forces in a multi-component system are derived on a very general basis. Introducing appropriate expressions for the chemical as well as the mechanical dissipation based on jump conditions of quantities such as the deformation rate and the diffusive fluxes at the moving interface allows to formulate proper transformation criteria. No fluxes will occur in the case of displacive, i.e. martensitic transformation which is responsible for the TRIP phenomenon. The mechanism governing the selection of a particular martensitic variant of the product phase out of a discrete number of possible variants is described in the paper. The underlying ideas and tools supplied by continuum mechanics eventually leading to a transformation condition for martensitic transformation are summarised in the appendix. The second section of the paper shows some aspects of a comprehensive experimental program investigating the thermo-mechanical behaviour of a maraging steel with very advantageous properties in the transformation regime. It allows to filter out the TRIP strain evolution during transformation from the total strain measured by means of a multiaxial tension torsion dilatometer equipment. The focus is put on finding a material law that is valid also for non-proportional loading paths. Unlike the predictions of traditional constitutive relationships the TRIP strain rate exhibits a significant drop if the external load is removed during the progress of transformation suggesting the existence of a transformation related backstress. Finally a method is demonstrated how to validate the experimental findings by means of a numerical algorithm. Based on the physical principles explained in the first part of the paper a subroutine can be devised and implemented into a commercial finite element code that allows to simulate the behaviour of the material represented by a unit cell. The simulations yield realistic results for the transformation kinetics, the load-displacement curves as well as the material response for non-proportional loading paths.</p>