People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Erik Weinell, Claus
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Protective Mechanisms of Siloxane-Modified Epoxy Novolac Coatings at High-Pressure, High-Temperature Conditions
- 2024Advancing Coating Science: Non-Destructive Methods for Coating Degradation Evaluation and Breakdown Mechanism Investigation
- 2023Incorporation of unmodified technical Kraft lignin particles in anticorrosive epoxy novolac coatings
- 2023Trust, but verify!
- 2023Chemically-resistant epoxy novolac coatings: Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing componentcitations
- 2022Marine biofouling resistance rating using image analysiscitations
- 2022Detection and quantification of premature crack formation in curing epoxy coatingscitations
- 2022Encapsulated Inhibitive Pigment for Smart Anti-corrosive Epoxy Coatings
- 2022A Tunable Hyperspectral Imager for Detection and Quantification of Marine Biofouling on Coated Surfacescitations
- 2022Coating degradation and rust creep assessment - A comparison between a destructive method according to ISO 12944 and selected non-destructive methods
- 2022Parallel measurements and engineering simulations of conversion, shear modulus, and internal stress during ambient curing of a two-component epoxy coatingcitations
- 2022Self-stratification studies in waterborne epoxy-silicone systemscitations
- 2022Non-destructive Evaluation of Coating Degradation and Rust Creep
- 2021Methanol degradation mechanisms and permeability phenomena in novolac epoxy and polyurethane coatingscitations
- 2021The influence of CO2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coatingcitations
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021A Tannin-based Inhibitive Pigment for a Sustainable Anti-corrosive Epoxy Coating Formulation
- 2021Degradation pathways of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures
- 2021Effects of Biochar Nanoparticles on Anticorrosive Performance of Zinc-rich Epoxy Coatingscitations
- 2021Rust creep assessment - A comparison between a destructive method according to ISO 12944 and selected non-destructive methodscitations
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021The evolution of coating properties and internal stress during ambient curing of a two-component epoxy coating
- 2019Corrosion Protection of Epoxy Coating with Calcium Phosphate Encapsulated by Mesoporous Silica Nanoparticles
- 2019Exposure of hydrocarbon intumescent coatings to the UL1709 heating curve and furnace rheology: Effects of zinc borate on char propertiescitations
- 2019Measurements of methanol permeation rates across thermoset organic coatings
- 2009Advancements in high performance zinc epoxy coatings
- 2008Non-destructive determination of rust creep
- 2007Advancement in zinc rich epoxy primers for corrosion protection
- 2007Adhesion between coating layers based on epoxy and siliconecitations
- 2006Dissolution rate measurements of sea water soluble pigments for antifouling paintscitations
- 2006Anti-fouling silicone elastomers for offshore structures
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
Places of action
Organizations | Location | People |
---|
document
A Tannin-based Inhibitive Pigment for a Sustainable Anti-corrosive Epoxy Coating Formulation
Abstract
During the past years, tannins have been extensively used as corrosion inhibitors in boiler feed-water and water cooling systems to protect the internal parts of the equipment. Their inhibition action relies on the physical or chemical adsorption (depending on the environment) to the metal surface and the formation of a protective film. Tannins are considered one of the most abundant components extracted from natural resources, after cellulose, hemicelluloses, and lignin due to their high concentration in several plants.<br/><br/>The use of organic inhibitive pigments that can be extracted from natural resources has driven researchers’ attention recently. The substitution of the commercially available inorganic inhibitive pigments (e.g. zinc phosphate) by organic can provide with non-toxic, renewable, low cost and efficient raw materials the pigments industry [1], [2]. Tannin-based pigments are promising candidates in this direction. Tannate complexes have been synthesized from tannins and added to organic coatings. However, the research on the performance of tannate inhibitive pigments in organic coatings is still quite limited [3], [4].<br/><br/>The present work investigates the anti-corrosive performance of the calcium tannate complex into an epoxy coating system in comparison to the commercially available inhibitive pigments. Calcium tannate was synthesized, characterized and dispersed into the epoxy coating. Electrochemical Impedance Spectroscopy (EIS) and Scanning Acoustic Microscopy (SAM) were employed to monitor the anti-corrosive performance of the coating formulated with the as-prepared pigment after the exposure to the salt spray chamber. Reference coatings with the commercial zinc phosphate and calcium phosphate pigments were also evaluated for comparison reasons. The effective anti-corrosive properties of calcium tannate were successfully demonstrated by both EIS and SAM results.