People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bomer, Johan G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2017Sensing oxygen at the millisecond time-scale using an ultra-microelectrode array (UMEA)citations
- 2016Molecularly Imprinted Polymer-Carbon Nanotube based Cotinine sensorcitations
- 2009Silicon and Glass Micromachining
- 2007Integrated electrochemical sensor array for on-line monitoring of yeast fermentationscitations
- 2006Monitoring of yeast cell concentration using a micromachnined impedance sensorcitations
- 2005Monitoring of yeast cell concentration using a micromachined impedance sensor
- 20041-D nanochannels fabricated in polyimidecitations
Places of action
Organizations | Location | People |
---|
booksection
Silicon and Glass Micromachining
Abstract
The past two decades have seen rapid advancement of Lab on a Chip (LOC) systems with applications ranging from gas chromatography to capillary electrophoresis, and more recently to high-pressure chemistry and single cell analysis. For many applications in clinical medicine, biology and chemistry, silicon and glass may still be the preferred materials. The mechanical rigidity, chemical resistance, and low permeability properties of silicon and glass, combined with the optical transparency of glass, make them a good choice for many demanding LOC applications. The large and well developed silicon and glass micromachining toolbox provide the capability to obtain microstructures with high precision and repeatability. In addition, scaling device dimensions down to the nanometer scale is relatively straight forward using silicon and glass micromachining, which is important for emerging fields, such nanofluidics and nanosensing.