People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carlen, Edwin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2015Functionalization and bioimmobilization of silicon surfaces with Si-N bonded monolayercitations
- 2014The contribution of plasmon-enhanced photoluminescence to the SERS backgroundcitations
- 2013Large area metal nanowire arrays with submicron pitch and tunable sub-20 nm nanogaps
- 2013Large area metal nanowire arrays with tunable sub-20nm nanogapscitations
- 2011Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubescitations
- 2010A lab-on-a-chip system integrated with subwavelength periodic patterned metal surfaces for sers-based molecular identification biosensing
- 2009Silicon and Glass Micromachining
- 2007Simple technique for direct patterning of nanowires using a nanoslit shadow-maskcitations
Places of action
Organizations | Location | People |
---|
booksection
Silicon and Glass Micromachining
Abstract
The past two decades have seen rapid advancement of Lab on a Chip (LOC) systems with applications ranging from gas chromatography to capillary electrophoresis, and more recently to high-pressure chemistry and single cell analysis. For many applications in clinical medicine, biology and chemistry, silicon and glass may still be the preferred materials. The mechanical rigidity, chemical resistance, and low permeability properties of silicon and glass, combined with the optical transparency of glass, make them a good choice for many demanding LOC applications. The large and well developed silicon and glass micromachining toolbox provide the capability to obtain microstructures with high precision and repeatability. In addition, scaling device dimensions down to the nanometer scale is relatively straight forward using silicon and glass micromachining, which is important for emerging fields, such nanofluidics and nanosensing.