People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dodd, S. J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2016Dielectric response of filled high temperature vulcanization silicone rubbercitations
- 2015Electro-chemical degradation of thin film X2 safety capacitors
- 2010Dielectric spectroscopy study of thermally-aged extruded model power cablescitations
- 2010Dielectric spectroscopy study of thermally-aged extruded model power cablescitations
- 2010Influence of the temperature on the dielectric properties of epoxy resins
- 2003The influence of morphology on electrical treeing in polyethylene blends
Places of action
Organizations | Location | People |
---|
conferencepaper
Electro-chemical degradation of thin film X2 safety capacitors
Abstract
There is some field evidence that certain manufactured batches of thin film X2 capacitors are more susceptible to electro-chemical corrosion than others. Studies undertaken at the University of Leicester, City University London and the University of Southampton have investigated this degradation mechanism, developed underlying theory for this behaviour and validated the theory using data from damp heat testing. This paper details the anatomy of thin film X2 capacitors, details the principal mechanisms of degradation and breakdown before explaining the electrochemical corrosion mechanism and associated loss of capacitance. The effects of this degradation mechanism on other properties of the capacitor are shown to be minimal as evidenced by dielectric spectroscopy and other measurements. The ultimate conclusion is that unlike other types of capacitor, a pre-defined drop in initial capacitance does not signify end of useful life and for specific applications end of life of an X2 capacitor should be defined as the minimum value of X2 capacitance that will ensure reliable operation of a given circuit.