People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zineb, Tarak Ben
Université de Lorraine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020Combined bending–torsion testing device for characterization of shape memory alloy endodontic filescitations
- 2018Uncertainty analysis of an actuator for a shape memory alloy micro-pump with uncertain parameterscitations
- 2012Finite Element analysis of a shape memory alloy actuator for a micropumpcitations
- 2011Impact of microstructural mechanisms on ductility limits
- 2010Coupling between measured kinematic fields and multicrystal SMA finite element calculationscitations
- 2009Coupling between experiment and numerical simulation of shape memory alloy multicrystalcitations
- 2009Strain localization analysis deduced from a large strain elastic-plastic self-consistent model for multiphase steels
- 2009Dialogue entre expérience et simulation numérique pour un multicristal en alliage à mémoire de forme
- 2007Strain localization analysis using a large strain self-consistent approach
Places of action
Organizations | Location | People |
---|
document
Strain localization analysis deduced from a large strain elastic-plastic self-consistent model for multiphase steels
Abstract
In order to investigate the impact of microstructures and deformation mechanisms on the ductility of materials, the criterion based on bifurcation theory first proposed by Rice is applied to elastic-plastic tangent moduli derived from a large strain micromechanical model combined with a self-consistent scale transition scheme. This approach takes into account several microstructural aspects for polycrystalline aggregates: initial and induced textures, dislocation densities, softening mechanisms so that the behavior during complex loading paths can be accurately described. Based on this formulation, Forming Limit Diagrams (FLDs) are derived and compared with a reference model for multiphase steels involving linear and complex loading paths. Furthermore, the effect of various physical and microstructural parameters on the ductility limit of a single-phase steel is qualitatively studied with the aim of helping in the design of new materials.