Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marcellan, Alba

  • Google
  • 14
  • 46
  • 497

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2023Double Networks: Hybrid Hydrogels with Clustered Silica8citations
  • 2023Role of Polymer–Particle Adhesion in the Reinforcement of Hybrid Hydrogels2citations
  • 2023Mechanisms of damage and fracture of aramid fibers: Focus on the role of microfibril cooperativity in fracture toughness5citations
  • 2023Mechanisms of damage and fracture of aramid fibers: Focus on the role of microfibril cooperativity in fracture toughness5citations
  • 2021Macromolecular Additives to Turn a Thermoplastic Elastomer into a Self-Healing Material31citations
  • 2021Towards an understanding of the mechanical response of aramid fibers at the filament scalecitations
  • 2019In Situ tensile tests to analyze the mechanical response, crack initiation, and crack propagation in single polyamide 66 fibers4citations
  • 2016Thermoresponsive Toughening in LCST-Type Hydrogels with Opposite Topology: From Structure to Fracture Properties58citations
  • 2016Multiaxial mechanical behavior of aramid fibers and identification of skin/core structure from single fiber transverse compression testing35citations
  • 2016Multiaxial mechanical behavior of aramid fibers and identification of skin/core structure from single fiber transverse compression testing35citations
  • 2015Multi-axial mechanical behavior of aramid fibers and identification of skin/core structure from single fiber transverse compression testingcitations
  • 2014Rheology over five orders of magnitude in model hydrogels: agreement between strain-controlled rheometry, transient elastography, and supersonic shear wave imaging13citations
  • 2013Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels124citations
  • 2013Stress–Strain Relationship of Highly Stretchable Dual Cross-Link Gels: Separability of Strain and Time Effect177citations

Places of action

Chart of shared publication
Olanier, Ludovic
1 / 2 shared
Le Gulluche, Anne-Charlotte
2 / 3 shared
Ducouret, Guylaine
2 / 10 shared
Brûlet, Annie
3 / 17 shared
Sanseau, Olivier
2 / 3 shared
Sotta, Paul
2 / 18 shared
Pantoustier, Nadège
1 / 11 shared
Didane, Nizar
2 / 2 shared
Joannès, Sébastien
6 / 37 shared
Bataille, François
2 / 2 shared
Roux, Solène Le
1 / 1 shared
Schittecatte, Laura
2 / 3 shared
Bès, Maxime
2 / 2 shared
Bresson, Bruno
2 / 14 shared
Richard, Clotilde
3 / 3 shared
Le Roux, Solène
1 / 1 shared
Simonin, Léo
1 / 1 shared
Dalmas, Florent
1 / 30 shared
Pensec, Sandrine
1 / 4 shared
Chenal, Jean-Marc
1 / 10 shared
Chazeau, Laurent
1 / 42 shared
Bouteiller, Laurent
1 / 13 shared
Falco, Guillaume
1 / 5 shared
Ganachaud, Francois
1 / 9 shared
Laiarinandrasana, Lucien
1 / 57 shared
Bunsell, Anthony
1 / 4 shared
Piques, Roland
1 / 9 shared
Mussault, Cécile
1 / 2 shared
Hourdet, Dominique
2 / 3 shared
Sanson, Nicolas
1 / 6 shared
Guo, Hui
1 / 1 shared
Bruant, Rémi
3 / 3 shared
Romero De La Osa, Marc
2 / 2 shared
Bunsell, Anthony R.
3 / 23 shared
Wollbrett-Blitz, Judith
3 / 3 shared
Le Clerc, Christophe
2 / 4 shared
Osa, Marc Romero De La
1 / 1 shared
Clerc, Christophe Le
1 / 1 shared
Larquet, Clément
1 / 1 shared
Tanter, Mickaël
1 / 9 shared
Gennisson, Jean-Luc
1 / 17 shared
Dizeux, Alexandre
2 / 2 shared
Rose, Severine
1 / 1 shared
Narita, Tetsuharu
2 / 12 shared
Mayumi, Koichi
1 / 4 shared
Creton, Costantino
1 / 30 shared
Chart of publication period
2023
2021
2019
2016
2015
2014
2013

Co-Authors (by relevance)

  • Olanier, Ludovic
  • Le Gulluche, Anne-Charlotte
  • Ducouret, Guylaine
  • Brûlet, Annie
  • Sanseau, Olivier
  • Sotta, Paul
  • Pantoustier, Nadège
  • Didane, Nizar
  • Joannès, Sébastien
  • Bataille, François
  • Roux, Solène Le
  • Schittecatte, Laura
  • Bès, Maxime
  • Bresson, Bruno
  • Richard, Clotilde
  • Le Roux, Solène
  • Simonin, Léo
  • Dalmas, Florent
  • Pensec, Sandrine
  • Chenal, Jean-Marc
  • Chazeau, Laurent
  • Bouteiller, Laurent
  • Falco, Guillaume
  • Ganachaud, Francois
  • Laiarinandrasana, Lucien
  • Bunsell, Anthony
  • Piques, Roland
  • Mussault, Cécile
  • Hourdet, Dominique
  • Sanson, Nicolas
  • Guo, Hui
  • Bruant, Rémi
  • Romero De La Osa, Marc
  • Bunsell, Anthony R.
  • Wollbrett-Blitz, Judith
  • Le Clerc, Christophe
  • Osa, Marc Romero De La
  • Clerc, Christophe Le
  • Larquet, Clément
  • Tanter, Mickaël
  • Gennisson, Jean-Luc
  • Dizeux, Alexandre
  • Rose, Severine
  • Narita, Tetsuharu
  • Mayumi, Koichi
  • Creton, Costantino
OrganizationsLocationPeople

conferencepaper

Towards an understanding of the mechanical response of aramid fibers at the filament scale

  • Joannès, Sébastien
  • Marcellan, Alba
  • Richard, Clotilde
Abstract

Technical fibers, and especially aromatic polyamide fibers, known as aramid fibers, are used as reinforcements in high performance composites. Mechanical characterization at the single fiber scale is challenging, especially when the diameter is as small as 12 µm, but essential to optimize performances at the product scale. In this work, we developed multiaxial characterization techniques at the filament scale. Fibers mechanical properties are linked to their highly oriented structure resulting in a strongly anisotropic behavior: both longitudinal tensile tests and single fiber transverse compression tests (SFTCT) were used. The fiber showed remarkable properties in the longitudinal direction: a modulus of 87 GPa and a failure stress around 3 GPa. In the transverse direction, the fiber showed dissipative mechanisms and plastic deformation above 0,25N/mm, the experimental elastic limit. Using Finite Element Simulations, we showed that the transverse mechanical response of the fiber is closely linked to the fiber skin/core structure and is not strongly influenced by the geometry of the transverse section. We determined transverse modulus: E(skin)= 0,3 GPa et E(core)= 5 GPa. These results highlight microstructure/mechanical properties relationships of aramid fiber at filament scale.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • simulation
  • anisotropic
  • composite
  • compression test