People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rehnberg, Nicola
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Semi-Crystalline and Amorphous Polyesters Derived from Biobased Tri-Aromatic Dicarboxylates and Containing Cleavable Acylhydrazone Units for Short-Loop Chemical Recyclingcitations
- 2024Semi-Crystalline and Amorphous Polyesters Derived from Biobased Tri-Aromatic Dicarboxylates and Containing Cleavable Acylhydrazone Units for Short-Loop Chemical Recyclingcitations
- 2024Reversibly Crosslinked Polyurethane Fibres from Sugar-Based 5-Chloromethylfurfural: Synthesis, Fibre-Spinning and Fibre-to-Fibre Recyclingcitations
- 2024Improved chemical recyclability of 2,5-furandicarboxylate polyesters enabled by acid-sensitive spirocyclic ketal unitscitations
- 2023Short-Loop Chemical Recycling via Telechelic Polymers for Biobased Polyesters with Spiroacetal Unitscitations
- 2023Carboligation of 5-(hydroxymethyl)furfural via whole-cell catalysis to form C12 furan derivatives and their use for hydrazone formationcitations
- 2021Biobased aliphatic polyesters from a spirocyclic dicarboxylate monomer derived from levulinic acidcitations
- 2021Synthesis and melt-spinning of partly bio-based thermoplastic poly(cycloacetal-urethane)s toward sustainable textilescitations
- 2019Synthesis, life cycle assessment, and polymerization of a vanillin-based spirocyclic diol toward polyesters with increased glass-transition temperaturecitations
- 2019Effect of Relative Humidity on the Viscoelasticity of Thin Organic Films Studied by Contact Thermal Noise AFMcitations
- 2019Synthesis, life cycle assessment, and polymerization of a vanillin-based spirocyclic diol toward polyesters with increased glass transition temperaturecitations
- 2018Humidity-induced phase transitions of surfactants embedded in latex coatings can drastically alter their water barrier and mechanical propertiescitations
- 2018Humidity-Induced Phase Transitions of Surfactants Embedded in Latex Coatings Can Drastically Alter Their Water Barrier and Mechanical Propertiescitations
- 2004Synthesis and Cationic Photopolymerization of New Silicon-Containing Oxetane Monomerscitations
- 2003Allyl ethers in the thiol-ene reaction
- 2003Hyperbranched Polymers in Cationic Photopolymerization of Epoxy Systemscitations
- 2002Process for manufacture of a dendritic polyether
Places of action
Organizations | Location | People |
---|
patent
Process for manufacture of a dendritic polyether
Abstract
A process for manufacture of a dendritic polyether comprising a core, derived from a compound having two or more hydroxyl groups, and at least one branching generation being built up from at least one hydroxyoxetane having one oxetane group and at least one hydroxyl group is disclosed. The process comprises ring opening addition to said core and ring opening polymerisation of said hydroxyoxetane. A mixture of the core compound and at least one cationic initiator is prepared and said hydroxyoxetane is fed to said mixture at a rate resulting in and/or maintaining a reaction temperature below onset at thermal degradation and in an amount resulting in at least one branching generation. The initiator is present in an amount of 0.1-0.5 % by weight calculated on said core and said oxetane, preferably in an amount giving a ratio hydroxyl groups to initiator of between 1:0.01 and 1:0.05. Yielded dendritic polyether is sebsequently neutralised by addition of at least one alkaline compound and optionally purified.