People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Henein, Hani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023The most sustainable high entropy alloys for the future
- 2023Influence of Minor Additions of Be on the Eutectic Modification of an Al-33wt.%Cu Alloy Solidified under Transient Conditionscitations
- 2023Development and Application of a Thermal Microstructure Model of Laminar Cooling of an API X70 Microalloyed Steel
- 2017Solidification of Undercooled Melts of Al-Based Alloys on Earth and in Spacecitations
- 2016Quantification of Primary Dendritic and Secondary Eutectic Nucleation Undercoolings in Rapidly Solidified Hypo-Eutectic Al-Cu Dropletscitations
- 2015Characterization of dendrite morphologies in rapidly solidified Al–4.5wt.%Cu dropletscitations
- 2015Evolution of the dendritic morphology with the solidification velocity in rapidly solidified Al- 4.5wt.%Cu dropletscitations
- 2014Dendrite growth morphologies in rapidly solidified Al-4.5wt.%Cu dropletscitations
- 2013Quantification of primary dendritic and secondary eutectic undercoolings of rapidly solidified Al-Cu droplets
- 2013Quantification of primary dendritic and secondary eutectic undercoolings of rapidly solidified Al-Cu droplets
- 2012Quatification of primary phase undercooling of rapidly solidified droplets with 3D microtomographycitations
- 2012Quatification of primary phase undercooling of rapidly solidified droplets with 3D microtomographycitations
- 2012Neutron diffraction analysis and solidification modeling of Impulse-Atomized Al-36 wt%Nicitations
- 2011Containerless solidification and characterization of industrial alloys (NEQUISOL)citations
- 2011Non-equilibrium solidification, modelling for microstructure engineering of industrial alloys (NEQUISOL)
- 2010Droplet Solidification of Impulse Atomized Al-0.61Fe and Al-1.9Fe
- 2009A Solidification Model for Atomizationcitations
- 2008Non-equilibrium and near-equilibrium solidification of undercooled melts of Ni- and Al-based alloyscitations
- 2008The Effect of Eutectic Undercooling on Microsegregation of Rapidly Solidified Al-Cu Droplets
- 2006Atomized droplet solidification as an equiaxed growth modelcitations
- 2004X-ray tomography study of atomized al-cu droplets citations
- 2004Modeling of Heat and Solute Flows during Solidification of Droplets
Places of action
Organizations | Location | People |
---|
article
The Effect of Eutectic Undercooling on Microsegregation of Rapidly Solidified Al-Cu Droplets
Abstract
International audience ; Al-Cu alloys of (nominal) compositions 4.3 wt%Cu, 5 wt%Cu, 10 wt%Cu and 1 7 wt%Cu were atomized using a drop tower type technique under N2 and He gas. The atomized droplets were characterized using X-Ray tomography, Neutron Diffraction and Stereology calculations on Scanning Electron Microscope images. From the results of these experiments, the position of nucleus within an individual droplet, the volume percent of initial growth, recalescence and eutectic fraction were determined. Some of this data was used to initialize the solidification piodel developed for microsegregation during rapid solidification. The model solves the heat balance equation as the droplet loses heat to the gas in the atomizing chamber and phase transformation occurs during solidification. Starting with an off-center nucleation site and an initial user-defined undercooling for the nucleation of the primary phase, the model predicts the thermal history, fraction solidified and microsegregation in the droplet as a function of time. The calculated amount of eutectic in the solidified droplet is compared with the measured values. It will be shown that accounting for eutectic undercooling is critical to the agreement between experimental and predicted results.