People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gorash, Yevgen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Assessing the very high cycle fatigue behaviour and frequency effect of structural steel welds
- 2023Ultrasonic fatigue testing of structural steel S275JR+AR with insights into corrosion, mean stress and frequency effectscitations
- 2023Ultrasonic fatigue testing of structural steel welded joints
- 2021Investigation of S275JR+AR structural steel fatigue performance in very high cycle domain
- 2019New formulation of nonlinear kinematic hardening model, part IIcitations
- 2019New formulation of nonlinear kinematic hardening model, part Icitations
- 2018High cycle fatigue analysis in the presence of autofrettage compressive residual stresscitations
- 2018Fatigue and corrosion fatigue life assessment with application to autofrettaged partscitations
- 2017Consideration of weld distortion throughout the identification of fatigue curve parameters using mean stress correction
- 2017On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviourcitations
- 2017Implementation of plasticity model for a steel with mixed cyclic softening and hardening and its application to fatigue assessments
- 2016Effect of high temperature on structural behaviour of metal-to-metal seal in a pressure relief valve
- 2016Application of multiscale approaches to the investigation of sealing surface deformation for the improvement of leak tightness in pressure relief valvescitations
- 2016A comparative study of simulated and experimental results for an extruding elastomeric component
- 2014Safe structural design for fatigue and creep using cyclic yield strength
- 2014Cyclic yield strength in definition of design limits for fatigue and creepcitations
- 2013High-Temperature Inelastic Behavior of the Austenitic Steel AISI Type 316citations
Places of action
Organizations | Location | People |
---|
document
Investigation of S275JR+AR structural steel fatigue performance in very high cycle domain
Abstract
There is a limited data on VHCF for structural steels and their weldments for >107 cycles. Unalloyed low-carbon steel S275JR+AR (EN 10025) is a common structural material for the components made for the minerals and mining applications. The purpose of this research is an investigation of the gigacycle domain for S275JR+AR grade that is intended to work for years at normal frequencies (10-20 Hz) of loading with low stress amplitudes. The work focuses on ultrasonic fatigue testing of the steel in both as-manufactured and pre-corroded conditions. As the heating is a massive challenge for ultrasonic fatigue testing especially in the case of structural steels attributed with a pronounced frequency effect, temperature control arrangement is crucial for proper implementation of testing. The frequency effect is assessed by comparing the fatigue test data at 20kHz and conventional frequency of 15Hz. Its contribution is found to be significant because there is no overlap between the stress ranges of interest. The ultrasonic fatigue data is intended to be applied to the fatigue assessments of the equipment operating at normal frequency for 1010 cycles. Therefore, the effect of frequency sensitivity is quantified by calculating the difference in terms of stress amplitude between corresponding SN curves.