People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Jianglin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2020Microstructure evolution during hot deformation of REX734 austenitic stainless steelcitations
- 2017A dynamic model for simulation of hot radial forging processcitations
- 2017Effects of forming route and heat treatment on the distortion behaviour of case-hardened martensitic steel type S156
- 2013The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
- 2012The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
- 2012On the mechanism of porosity formation during welding of titanium alloyscitations
- 2012Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloyscitations
- 2012Coupled thermodynamic/kinetic model for hydrogen transport during electron beam welding of titanium alloycitations
Places of action
Organizations | Location | People |
---|
document
The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
Abstract
<p>Titanium and its alloys are prone to hydrogen-assisted porosity formation during welding, but this effect is not yet sufficiently understood. Research aimed at elucidating the behaviour of hydrogen during electron beam welding of Ti-6Al-4V is presented. Characterisation is carried out using high resolution X-ray tomography, residual gas analysis and metallographic sectioning; this confirms that porosity formation is associated with hydrogen evolution. To quantify the dependence between porosity formation and hydrogen content in the base material, a hydrogen diffusion-controlled bubble growth model is used to simulate bubble growth in the melt, and thus to make predictions of the hydrogen concentration barrier needed for pore formation. The modeling results are supported up by experimentation on Ti-6Al-4V of different hydrogen levels, achieved by electrochemical charging. The results confirm that vigorous hydrogen degassing happens at high hydrogen levels. But porosity can be suppressed when welding is carried out with optimized welding parameters and perfect joint alignment; on the other hand, porosity is exacerbated when a small beam offset is employed. The influence of beam offset on porosity formation is discussed. It would appear that the nucleation rate in the liquid zone at the melting front determines the likelihood of porosity occurrence.</p>