Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Palmolahti, Lauri Johannes

  • Google
  • 5
  • 14
  • 132

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Insights into Tailoring of Atomic Layer Deposition Grown TiO2 as Photoelectrode Coatingcitations
  • 2022Low-Temperature Route to Direct Amorphous to Rutile Crystallization of TiO2Thin Films Grown by Atomic Layer Deposition25citations
  • 2022Tunable Ti3+-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO248citations
  • 2019Defect engineering of atomic layer deposited TiO2 for photocatalytic applicationscitations
  • 2019Diversity of TiO2: Controlling the molecular and electronic structure of atomic layer deposited black TiO259citations

Places of action

Chart of shared publication
Valden, Mika
5 / 37 shared
Ali-Löytty, Harri
5 / 44 shared
Hannula, Markku
5 / 15 shared
Lahtonen, Kimmo
5 / 38 shared
Grönbeck, Henrik
2 / 8 shared
Tukiainen, Antti
3 / 23 shared
Kauppinen, Minttu M.
1 / 1 shared
Saari, Jesse
5 / 16 shared
Kauppinen, Minttu Maria
1 / 1 shared
Khan, Ramsha
1 / 13 shared
Tkachenko, Nikolai V.
1 / 19 shared
Bhuskute, Bela D.
2 / 4 shared
Ulkuniemi, Riina
1 / 1 shared
Nyyssönen, Tuomo
1 / 12 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Valden, Mika
  • Ali-Löytty, Harri
  • Hannula, Markku
  • Lahtonen, Kimmo
  • Grönbeck, Henrik
  • Tukiainen, Antti
  • Kauppinen, Minttu M.
  • Saari, Jesse
  • Kauppinen, Minttu Maria
  • Khan, Ramsha
  • Tkachenko, Nikolai V.
  • Bhuskute, Bela D.
  • Ulkuniemi, Riina
  • Nyyssönen, Tuomo
OrganizationsLocationPeople

document

Defect engineering of atomic layer deposited TiO2 for photocatalytic applications

  • Valden, Mika
  • Ali-Löytty, Harri
  • Bhuskute, Bela D.
  • Palmolahti, Lauri Johannes
  • Hannula, Markku
  • Lahtonen, Kimmo
  • Saari, Jesse
Abstract

Photoelectrochemical (PEC) water splitting is one of the potential methods of storing solar energy into chemical form as hydrogen. A major issue with the method and a challenge of renewable energy production is the development of efficient, chemically stable and cost-effective semiconductor photoelectrodes. Crystalline TiO2 as such is extremely stable and capable of unassisted photocatalytic water splitting but the efficiency is limited by the bandgap (3.0–3.2 eV) to harvest photons only in the UV range. Recently, otherwise unstable semiconductor materials that can harvest the full solar spectrum has been successfully stabilized by amorphous titanium dioxide (am.-TiO2) coatings grown by atomic layer deposition (ALD) [1]. However, the stability of am.-TiO2 without additional co-catalyst has remained unresolved [2].<br/><br/>In our recent studies, we have reported means to thermally modify the defect structure of ALD grown am.-TiO2 thin film under oxidative [3] and reductive [4] conditions. TiO2 films were grown on silicon and fused quartz substrates by ALD at 200 °C using tetrakis(dimethylamido)titanium (TDMAT) and deionized water as precursors. Based on the results, the as-deposited am.-TiO2 is chemically unstable and visually black exhibiting both enhanced absorbance in the visible range and exceptionally high conductivity due to the trapped charge carriers (Ti3+). Heat treatment in air at 200°C induces oxidation of Ti3+, decrease in absorb-ance and conductivity but has only a minor effect on the stability. However, a reasonable stability is obtained after oxidation at 300 °C, simultaneously with the crystallization of TiO2 into rutile. Furthermore, oxidation at 500 °C results in stable rutile TiO2 that produces the highest photocurrent for water oxidation. In contrast, reductive heat treatment in ultra-high vacuum (UHV) at 500 °C retains the amorphous phase for TiO2 but enhances the stability due to the formation of O– species via electron transfer from O to Ti. The schematic illustration of the effect of oxidative heat treatment on the defect structure of ALD TiO2 is shown in Figure 1.<br/><br/>As a conclusion, ALD TiO2 has proven its diversity. Conductive as-deposited black TiO2 is photoelectrochemically unstable but it can be transformed into stable phases of photocatalytically active rutile or electrically “leaky” amorphous black TiO2 by heat treatment in oxidative or reductive conditions, respectively.<br/><br/>1. S. Hu, M.R. Shaner, J.A. Beardslee, M. Lichterman, B.S. Brunschwig, N.S. Lewis, ”Amorphous TiO2 Coatings Stabilize Si, GaAs and GaP photoanodes for Efficient Water Oxidation”, Science 344, pp. 1005–1009, 2014<br/>2. K. Sivula, ”Defects Give New Life to an Old Material: Electronically Leaky Titania as a Photoanode Protection Layer”, ChemCatChem 6,pp. 2796–2797, 2014<br/>3. H. Ali-Löytty, M. Hannula, J. Saari, L. Palmolahti, B.D. Bhuskute, R. Ulkuniemi, T. Nyyssönen, K. Lahtonen, M. Valden, ”Diversity of TiO2: Controlling the Molecular and Electronic Structure of Atomic-Layer-Deposited Black TiO2”, ACS Appl. Mater. Interfaces 11 (3), pp. 2758–2762, 2019<br/>4. M. Hannula, H. Ali-Löytty, K. Lahtonen, E. Sarlin, J. Saari, M. Valden, ”Improved Stability of Atomic Layer De-posited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects”, Chemistry of Materials 30 (4), pp. 1199–1208, 2018<br/>

Topics
  • impedance spectroscopy
  • amorphous
  • phase
  • x-ray diffraction
  • thin film
  • x-ray photoelectron spectroscopy
  • Oxygen
  • semiconductor
  • Hydrogen
  • Silicon
  • defect
  • titanium
  • additive manufacturing
  • crystallization
  • defect structure
  • ultraviolet photoelectron spectroscopy
  • atomic layer deposition