Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aho, Timo Antero

  • Google
  • 3
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016High efficiency multijunction solar cells: Electrical and optical properties of the dilute nitride sub-junctionscitations
  • 2015Defects in dilute nitride solar cellscitations
  • 2015Dilute nitrides for boosting the efficiency of III-V multijunction solar cellscitations

Places of action

Chart of shared publication
Isoaho, Riku
2 / 9 shared
Aho, Arto Johannes
3 / 3 shared
Polojärvi, Ville Valtteri
3 / 3 shared
Lauri, Hytönen
1 / 1 shared
Raappana, Marianna Jenni Sofia
3 / 3 shared
Schramm, Andreas
2 / 3 shared
Guina, Mircea
3 / 36 shared
Tukiainen, Antti
3 / 23 shared
Chart of publication period
2016
2015

Co-Authors (by relevance)

  • Isoaho, Riku
  • Aho, Arto Johannes
  • Polojärvi, Ville Valtteri
  • Lauri, Hytönen
  • Raappana, Marianna Jenni Sofia
  • Schramm, Andreas
  • Guina, Mircea
  • Tukiainen, Antti
OrganizationsLocationPeople

document

Dilute nitrides for boosting the efficiency of III-V multijunction solar cells

  • Isoaho, Riku
  • Aho, Timo Antero
  • Aho, Arto Johannes
  • Polojärvi, Ville Valtteri
  • Raappana, Marianna Jenni Sofia
  • Guina, Mircea
  • Tukiainen, Antti
Abstract

Multijunction III-V solar cells have the highest conversion efficiencies among all photovoltaic devices with current world record of 46 %, measured under concentrated light [1]. Furthermore, III-V semiconductor solar cells are found to be the best choice for generating electricity for satellites, because of high power-to-mass ratio and good radiation hardness. Although so far, the record conversion efficiency has increased almost one percentage point per year, new materials and concepts are needed to overcome the 50 % conversion efficiency barrier. <br/><br/>To this end, one of the most promising III-V photovoltaic material families is dilute nitrides. Introducing nitrogen to GaInAs shrinks the band gap by influencing the conduction band, and forming a localized band inside the material [2]. Nitrogen also compensates the compressive strain caused by In, when material is grown on GaAs or Ge substrates, preventing the formation of harmful dislocations. Capability to achieve a band gap between 1.4-0.8 eV and still maintain lattice matching [3], makes GaInNAs a good candidate as a part of multijunction solar cell with conversion efficiency exceeding 50 %.<br/><br/>In this presentation we discuss the use of optimized [4] bulk GaInNAs hetero-structures in multijunction solar cell (Figure 1.). Moreover, we have used GaInNAs and GaNAs for strain compensation and mediation, to absorb photons, and to boost the thermal escape of charge carriers in InAs quantum dot solar cell [5]. The properties of the dilute nitride based solar cells developed will be discussed.<br/><br/> <br/><br/>Figure 1: A photograph of multijunction solar cell for concentrator applications, designed, fabricated and processed by the authors at Optoelectronics Research Centre, Tampere University of Technology.<br/><br/>References<br/>[1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovoltaics Res. Appl. 23, 805 (2015).<br/>[2] M. Henini (Ed.), Dilute Nitride Semiconductors(Elsevier, Amsterdam, 2005).<br/>[3] J. S. Harris, R. Kudrawiec, H. Yuen, S. Bank, H. Bae, M. Wistey, D. Jackrel, E. Pickett, T. Sarmiento and L. Goddard, Phys. Status Solidi B 244,2707 (2007).<br/>[4] A. Aho, V. Polojärvi, V.-M. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen and M. Guina, Solar Energy Mater. Solar Cells 124, 150 (2014).<br/>[5] V. Polojärvi, E.-M. Pavelescu, A. Schramm, A. Tukiainen, A. Aho, J. Puustinen and M. Guina, Scr. Mater. 108, 122 (2015).<br/>

Topics
  • impedance spectroscopy
  • Nitrogen
  • nitride
  • hardness
  • dislocation
  • forming
  • quantum dot
  • III-V semiconductor