People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tuukkanen, Sampo
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2021Properties of Barium Ferrite Nanoparticles and Bacterial Cellulose-Barium Ferrite Nanocomposites Synthesized by a Hydrothermal Method
- 2020Enhancing piezoelectric properties of bacterial cellulose films by incorporation of MnFe2O4 nanoparticlescitations
- 2019Motion energy harvesting and storage system including printed piezoelectric film and supercapacitorcitations
- 2019Electropolymerized polyazulene as active material in flexible supercapacitorscitations
- 2018Effect of surfactant type and sonication energy on the electrical conductivity properties of nanocellulose-CNT nanocomposite filmscitations
- 2018Nanofibrillated and bacterial celluloses as renewable piezoelectric sensor materials
- 2018Nanocellulose as a Piezoelectric Materialcitations
- 2018Nanocellulose as a Piezoelectric Materialcitations
- 2017Nanocellulose as a renewable piezoelectric sensor material
- 2017Electropolymerized polyazulene as active material in flexible supercapacitorscitations
- 2017Fabrication and characterization of nanocellulose aerogel structurescitations
- 2016Piezoelectric sensitivity of a layered film of chitosan and cellulose nanocrystalscitations
- 2016Structural and Electrical Characterization of Solution-Processed Electrodes for Piezoelectric Polymer Film Sensorscitations
- 2016Cellulose nanofibril film as a piezoelectric sensor materialcitations
- 2016Nanocellulose based piezoelectric sensors
- 2016Nanocellulose based piezoelectric sensors
- 2015Characteristics of Piezoelectric Polymer Film Sensors With Solution-Processable Graphene-Based Electrode Materialscitations
- 2014Stretching of solution processed carbon nanotube and graphene nanocomposite films on rubber substratescitations
- 2014Modelling of Joule heating based self-alignment method for metal grid line passivationcitations
- 2014Spray coating of self-aligning passivation layer for metal grid lines
Places of action
Organizations | Location | People |
---|
document
Nanocellulose based piezoelectric sensors
Abstract
SUMMARY<br/>We report the experimental results on piezoelectricity of nanocellulose films. The piezoelectric sensor elements were prepared usign a nanocellulose film as a sensing layer. The piezoelectric sensitivity values from 2-7 pC/N were obtained for the prepared sensor elements. <br/><br/>KEYWORDS: Nanocellulose, piezoelectric sensor, cellulose nanofibrils, polyvinylidenefluoride<br/><br/>INTRODUCTION<br/>Cellulose based nanomaterials, generally known as nanocellulose [1], are interesting renewable bio-based nanomaterials which have potential applications in material sciences, electronics and biomedical engineering and diagnostic. The piezoelectricity of wood initiates from the highly crystalline assemblies of cellulose chains [2]. Experimental evidence of the piezoelectricity of cellulose nanocrystals (CNC) was reported only very recently [3,4]. Cellulose nanofibrils (CNF), produced by a mechanical homogenizing process from cellulose fibers, contain both crystalline and amorphous regions (see Figure 1). CNC can be made from CNF by removal of amorphous regions using hydrolysis.<br/><br/>EXPERIMENTAL<br/>The piezoelectric sensitivity of prepared sensor elements is measured using in-house built measurement setup equipped with a mechanical shaker and charge amplifier (See Figure 2). The setup is described elsewhere in details [5].<br/><br/>RESULTS AND DISCUSSION<br/>A randomly oriented CNF film (prepared by pressure filtering from aqueous CNF dispersion) showed piezoelectric sensitivities of 2-7 pC/N [6,7]. The values align between the piezoelectric coefficients of quartz (2.3 pC/N) and polyvinylidenefluoride (PVDF, -30 pC/N). <br/><br/>CONCLUSION<br/>In this work, we have successfully demonstrated the fabrication of piezoelectric sensors using nanocellulose as a sensing material. Based on these findings, nanocellulose seems a promising material for sensors and energy harvesting applications. <br/><br/>REFERENCES<br/>[1] Moon, R. J., et al. "Cellulose nanomaterials review: structure, properties and nanocomposites." Chemical Society Reviews 40.7 (2011): 3941.<br/>[2] Fukada, E. "Piezoelectricity of wood." Journal of the Physical Society of Japan 10.2 (1955): 149.<br/>[3] Csoka, L. et al. "Piezoelectric effect of cellulose nanocrystals thin films." ACS Macro Letters 1.7 (2012): 867.<br/>[4] Frka-Petesic, B. et al. "First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals." Europhysics Letters 107.2 (2014): 28006.<br/>[5] Rajala, S. et al. “Structural and Electrical Characterization of Solution-Processed Electrodes for Piezoelectric Polymer Film Sensors.” IEEE Sensors Journal (Accepted for publication 2015).<br/>[6] Rajala, S. et al. "Piezoelectric sensitivity measurements of cellulose nanofibrils sensors." Proc. XXI IMEKO World Congr., Prague, Czech Republic (2015).<br/>[7] Tuukkanen, S. et al. "A survey of printable piezoelectric sensors." In: Proceedings of IEEE Sensors 2015 Conference, (2015): 1426.<br/> <br/>