Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tuukkanen, Sampo

  • Google
  • 22
  • 60
  • 653

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivity23citations
  • 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivity23citations
  • 2021Properties of Barium Ferrite Nanoparticles and Bacterial Cellulose-Barium Ferrite Nanocomposites Synthesized by a Hydrothermal Methodcitations
  • 2020Enhancing piezoelectric properties of bacterial cellulose films by incorporation of MnFe2O4 nanoparticles58citations
  • 2019Motion energy harvesting and storage system including printed piezoelectric film and supercapacitor4citations
  • 2019Electropolymerized polyazulene as active material in flexible supercapacitors29citations
  • 2018Effect of surfactant type and sonication energy on the electrical conductivity properties of nanocellulose-CNT nanocomposite films40citations
  • 2018Nanofibrillated and bacterial celluloses as renewable piezoelectric sensor materialscitations
  • 2018Nanocellulose as a Piezoelectric Material18citations
  • 2018Nanocellulose as a Piezoelectric Material18citations
  • 2017Nanocellulose as a renewable piezoelectric sensor materialcitations
  • 2017Electropolymerized polyazulene as active material in flexible supercapacitors29citations
  • 2017Fabrication and characterization of nanocellulose aerogel structures1citations
  • 2016Piezoelectric sensitivity of a layered film of chitosan and cellulose nanocrystals43citations
  • 2016Structural and Electrical Characterization of Solution-Processed Electrodes for Piezoelectric Polymer Film Sensors21citations
  • 2016Cellulose nanofibril film as a piezoelectric sensor material278citations
  • 2016Nanocellulose based piezoelectric sensorscitations
  • 2016Nanocellulose based piezoelectric sensorscitations
  • 2015Characteristics of Piezoelectric Polymer Film Sensors With Solution-Processable Graphene-Based Electrode Materials36citations
  • 2014Stretching of solution processed carbon nanotube and graphene nanocomposite films on rubber substrates30citations
  • 2014Modelling of Joule heating based self-alignment method for metal grid line passivation2citations
  • 2014Spray coating of self-aligning passivation layer for metal grid linescitations

Places of action

Chart of shared publication
Siljander, Sanna
3 / 10 shared
Kallio, Pasi
3 / 16 shared
Skogberg, Anne
2 / 3 shared
Mäki, Antti-Juhana
2 / 2 shared
Efimov, Alexander
2 / 12 shared
Hannula, Markus
2 / 13 shared
Lahtinen, Panu
2 / 13 shared
Björkqvist, Karl Tomas
1 / 3 shared
Honkanen, Mari Hetti
2 / 59 shared
Björkqvist, Tomas
1 / 2 shared
Honkanen, Mari
1 / 22 shared
Pinitsoontorn, Supree
2 / 8 shared
Mongkolthanaruk, Wiyada
1 / 3 shared
Tanakulrungsarit, Chanagan
1 / 1 shared
Sriplai, Nipaporn
1 / 4 shared
Santala, Ville Petteri
1 / 1 shared
Pammo, Arno
2 / 2 shared
Mangayil, Rahul
1 / 1 shared
Schaeffner, Phillip
1 / 1 shared
Rokaya, Chakra
1 / 4 shared
Keskinen, Jari
1 / 23 shared
Lupo, Donald
3 / 11 shared
Kvarnström, Carita
2 / 5 shared
Damlin, Pia
2 / 4 shared
Lehtimäki, Suvi
2 / 4 shared
Yewale, Rahul
2 / 2 shared
Suominen, Milla
2 / 3 shared
Kanerva, Mikko Samuli
1 / 30 shared
Räty, Anna
1 / 1 shared
Kunnari, Vesa
1 / 6 shared
Ramakrishnan, Karthik Ram
1 / 21 shared
Keinänen, Pasi
1 / 4 shared
Harlin, Ali
1 / 47 shared
Vuorinen, Jyrki E.
2 / 30 shared
Rajala, Satu
5 / 7 shared
Virtanen, Juhani
1 / 1 shared
Janka, Marika
2 / 2 shared
Kellomäki, Minna
1 / 31 shared
Salpavaara, T.
1 / 4 shared
Rajala, S.
2 / 3 shared
Palmroth, Aleksi
1 / 6 shared
Mettänen, Marja
2 / 2 shared
Vuoriluoto, Maija
1 / 7 shared
Sarlin, Essi Linnea
1 / 51 shared
Siponkoski, Tuomo
1 / 1 shared
Rojas, Orlando J.
1 / 51 shared
Juuti, Jari
1 / 9 shared
Franssila, Sami
1 / 16 shared
Viehrig, Marlitt
1 / 2 shared
Halttunen, Jouko
1 / 1 shared
Hoikkanen, Maija
1 / 3 shared
Vuorinen, Tiina
1 / 1 shared
Kakkonen, Markus
1 / 10 shared
Poikelispää, Minna
1 / 8 shared
Raumonen, Pasi
1 / 1 shared
Janka, M.
1 / 3 shared
Rubingh, J. E.
1 / 2 shared
Vuorinen, T.
1 / 3 shared
Groen, P.
1 / 10 shared
Lupo, D.
1 / 4 shared
Chart of publication period
2022
2021
2020
2019
2018
2017
2016
2015
2014

Co-Authors (by relevance)

  • Siljander, Sanna
  • Kallio, Pasi
  • Skogberg, Anne
  • Mäki, Antti-Juhana
  • Efimov, Alexander
  • Hannula, Markus
  • Lahtinen, Panu
  • Björkqvist, Karl Tomas
  • Honkanen, Mari Hetti
  • Björkqvist, Tomas
  • Honkanen, Mari
  • Pinitsoontorn, Supree
  • Mongkolthanaruk, Wiyada
  • Tanakulrungsarit, Chanagan
  • Sriplai, Nipaporn
  • Santala, Ville Petteri
  • Pammo, Arno
  • Mangayil, Rahul
  • Schaeffner, Phillip
  • Rokaya, Chakra
  • Keskinen, Jari
  • Lupo, Donald
  • Kvarnström, Carita
  • Damlin, Pia
  • Lehtimäki, Suvi
  • Yewale, Rahul
  • Suominen, Milla
  • Kanerva, Mikko Samuli
  • Räty, Anna
  • Kunnari, Vesa
  • Ramakrishnan, Karthik Ram
  • Keinänen, Pasi
  • Harlin, Ali
  • Vuorinen, Jyrki E.
  • Rajala, Satu
  • Virtanen, Juhani
  • Janka, Marika
  • Kellomäki, Minna
  • Salpavaara, T.
  • Rajala, S.
  • Palmroth, Aleksi
  • Mettänen, Marja
  • Vuoriluoto, Maija
  • Sarlin, Essi Linnea
  • Siponkoski, Tuomo
  • Rojas, Orlando J.
  • Juuti, Jari
  • Franssila, Sami
  • Viehrig, Marlitt
  • Halttunen, Jouko
  • Hoikkanen, Maija
  • Vuorinen, Tiina
  • Kakkonen, Markus
  • Poikelispää, Minna
  • Raumonen, Pasi
  • Janka, M.
  • Rubingh, J. E.
  • Vuorinen, T.
  • Groen, P.
  • Lupo, D.
OrganizationsLocationPeople

document

Nanocellulose based piezoelectric sensors

  • Tuukkanen, Sampo
  • Kallio, Pasi
  • Viehrig, Marlitt
  • Rajala, Satu
Abstract

Cellulose based nanomaterials, generally known as nanocellulose [1], are interesting renewable bio-based nanomaterials which have potential applications in material sciences, electronics and biomedical engineering and diagnostic. A strong ability to form light-weight, highly porous, entangled networks makes nanocellulose suitable substrate or membrane material for various applications, such as supercapacitors [2,3].It was proposed already in 1950’s, that wood has piezoelectric properties initiating from the highly crystalline assemblies of cellulose chains [4]. Experimental evidence of the piezoelectricity of cellulose nanocrystals (CNC) was reported only very recently [5,6]. Cellulose nanofibrils (CNF), produced by a mechanical homogenizing process from cellulose fibers, contain both crystalline and amorphous regions. CNC can be obtained from CNF by removal of amorphous regions using hydrolysis e.g. in sulfuric acid.Here, we report the experimental results on piezoelectricity of nanocellulose films prepared using different methods. The piezoelectric sensitivity of prepared sensor elements is measured using in-house built measurement setup equipped with a mechanical shaker and charge amplifier [7]. A randomly oriented CNF film (prepared by pressure filtering from aqueous CNF dispersion) showed piezoelectric sensitivities of 2-7 pC/N [8,9], which is between the piezoelectric coefficients of quartz (2.3 pC/N) and polyvinylidenefluoride (PVDF, -30 pC/N). Initial results from the nanocellulose based composite films gives promises for biomedical applications of nanocellulose based piezoelectric sensors. Keywords: Nanocellulose, piezoelectric sensor, cellulose nanofibrils, polyvinylidenefluoride[1]MOON, R. J., MARTINI, A., NAIRN, J., SIMONSEN, J. & YOUNGBLOOD, J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 40(7), 3941-3994.[2]TUUKKANEN, S., LEHTIMAKI, S., JAHANGIR, F., ESKELINEN, A.-P., LUPO, D. & FRANSSILA, S. 2014. Printable and disposable supercapacitor from nanocellulose and carbon nanotubes. In: Proceedings of the 5th Electronics System-Integration Technology Conference (ESTC). IEEE; 1-6. [3]TORVINEN, K., LEHTIMÄKI, S., KERÄNEN J. T., SIEVÄNEN, J. , VARTIAINEN, J.,HELLÉN, E., LUPO, D., & TUUKKANEN, S. 2015. Pigment-cellulose nanofibril composite and its application as a separator-substrate in printed supercapacitors. Electron Mater Lett., 11(6), 1040-1047.[4]FUKADA, E. 1955. Piezoelectricity of Wood. J Phys Soc Japan., 10, 149-154.[5]CSOKA, L., HOEGER, I. C., ROJAS, O. J., PESZLEN, I., PAWLAK, J. J. & PERALTA, P. N. 2012. Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett., 1(7), 867-870.[6]FRKA-PETESIC, B., JEAN, B. & HEUX, L. 2014. First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. EPL (Europhysics Lett., 107(2), 28006.[7]RAJALA, S., METTANEN, M. & TUUKKANEN, S. 2015. Structural and Electrical Characterization of Solution-Processed Electrodes for Piezoelectric Polymer Film Sensors. IEEE Sens J. (Accepted for publication).[8]RAJALA, S., VUORILUOTO, M., ROJAS, O. J., FRANSSILA, S. & TUUKKANEN, S. 2015. Piezoelectric sensitivity measurements of cellulose nanofibril sensors. In: XXI IMEKO 2015 World Congress “Measurement in Research and Industry” Conference Proceedings. 2-6.[9]TUUKKANEN, S. & RAJALA, S. 2015. A Survey of Printable Piezoelectric Sensors. In: Proceedings of IEEE Sensors 2015 Conference., 1426-1429.

Topics
  • porous
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • polymer
  • amorphous
  • Carbon
  • nanotube
  • thin film
  • composite
  • wood
  • cellulose